• Title/Summary/Keyword: Mountainous Area

Search Result 652, Processing Time 0.021 seconds

Relationship between Thermal Low and Long-Range Transport of Air Pollutants (대기오염물질의 장거리 수송과 열적저기압의 관계)

  • 이화운;김유근;김해동;정우식;현명숙
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • The atmospheric conditions and the transport mechanism of long-range transport of air pollutants from coastal area to inland area were investigated using regular meteorological data and air pollution data obtatined from the southeastern area of Korea. Daytime temperature over the inland area(Taegu) was higher than that over the coastal area(Pusan) and the temperature difference of about 5~6$^{\circ}C$ when the thermal low most fully developed and the sea level pressure over Taegu was lower than that over Pusan by about 4~5hPa at that time. Therefore this low pressure appeared to the thermally induced low. Air mass polluted from the coastal area during the morning period was transported inland area, at first by the sea breeze and by the large scale wind system toward the thermal low generated in the mountainous inland region. This was explained by the fact that the concentration of air pollutants over Taegu increased throughtout the late afternoon.

  • PDF

Riparian forest and environment variables relationships, Chichibu mountains, central, Japan (일본 Chichibu산지 계반림의 입지환경)

  • Ann, Seong-Won
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2003
  • In most mountainous parts of the temperate zone of Japan along the Pacific Ocean, some climatic climax forests, whose main dominant species is Fagus crenate, F. japonica or Quercus mongolica var. grosseserrata, are distributed. In the riparian regions of the zone, however, there appear summer green forests composed of the different species from the climatic climax forests. Climate plays an important role in determining the overall distribution of vegetation, but some environmental factors, i.e., topography, soil type, soil moisture content, etc. have a great influence on vegetation formation. Riparian forests seem to be controlled by various geomorphologic disturbances, such as landslide, soil erosion and accumulation. The study aims to present the relationships among vegetation, soils and landforms in the process of determining riparian forests dominated by Fraxinus platypoda and Pterocarya rhoifolia establishment in the mountainous region of central Japan. The study area extends an area of 302 ha with a range of elevation between 925 m and 1,681 m at the Chichibu mountains. The landforms were corditied at sampling grids (25 $\times$ 25 m, n = 4,843) using a hierarchical system, and a brief description of the forest soil classification was also given. The mutual relationship analysis indicated that forest soils and landforms play a significant role in determining the geomorphological process of riparian forest, and shaping the ultimate pattern of vegetation. At the study area, riparian forests were mainly found on the $B_E$ forest soil type and steep slopes ( > 30$^{\circ}$) at convex slopes along the streams. On the other hand, the direction of slopes did not have a significant impact on the establishment of the riparian forests. A mosaic of patchy distribution of those riparian forests on the slightly wetter $B_E$ forest soil type was one of the characteristic features of the study area. This particular soil which contained large talus gravels was found on the land formed by erosion and deposition of landslide.

Classification of Suitable Sites for Application of Alternative Irrigation Water Systems Utilizing Rainfall-Runoff in Drought-Prone Mid-Mountainous Farmlands in Korea (강우 유출수 활용 대체농업용수 시스템의 적용 가능 대상지 선정을 위한 국내 이수취약 중산간 밭농업 단지 추출 연구)

  • Choi, Jieun;Kim, Siho;Lee, Jeongeun;Kim, Youngjin;Jang, Min-Won;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.6
    • /
    • pp.15-26
    • /
    • 2024
  • Climate change is leading to an increase in agricultural droughts, with small-scale upland farming areas particularly vulnerable due to their lack of distinct water sources. These scattered mid-mountain regions are especially susceptible to agricultural droughts because they do not have well-defind sources for water extraction. This study aims to identify small-scale upland farming areas in Korea that are vulnerable to agricultural drought and in need of alternative agricultural water sources. To achieve this, evaluation criteria and indicators for irrigation-vulnerable agricultural areas were established, and these areas were extracted and quantitatively presented in terms of area and number of locations. The extracted irrigation-vulnerable agricultural areas cover an area of 10,330.7 ha and consist of a total of 2,635 village-scale farming locations, with the highest concentration of these areas in Gyeonggi-do. Based on this, an altitudinal analysis was conducted, and it was found that areas in Gangwon-do showed a lower rate of area reduction per 100 m elevation interval, while areas in Gyeonggi-do exhibited a higher rate of area reduction. This indicates that the target areas in Gangwon-do are located at relatively higher altitudes, while those in Gyeonggi-do are situated at lower altitudes. The results of this study are expected to serve as foundational data for selecting priority sites for the on-site application of alternative agricultural water systems in the future. Future studies may additionally be conduted to assess the effectiveness and economic viability of applying alternative agricultural water systems to irrigation-vulnerable agricultural areas.

A Study on the Locational Condition of Rural Life Style Pensions - Focused on the Geumsan Area - (농촌생활형 펜션의 입지환경에 관한 연구 - 금산지역을 중심으로 -)

  • Do, Yong-Ho
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.10 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • The Geumsan is contiguous to Daejeon and population is decreasing every year. Consequently, the population influx, and securing source of revenue dimensional geographic and environmental benefits of the establishment of a pensions plan for the rural life style pensions research. The result is that Geumsan has a convenient traffic circumstance geographically and is a clean area as the high-level area of solid water system. Also, Geumsan forms the mountainous area whose sea-level elevation reaches to 2.5 times of the Chungcheongnam-do. Consequently, Geumsan has a suitable environment for locating many kinds of pensions like the riverside village style, the mountain village style and the villa style, the country style, the cafe style, experience style, theme style etc. So, Geumsan is found to be a suitable area to host 'rural life style' pensions, because it has wide area, small population and nice environmental conditions.

  • PDF

A Study on a Model of Rainfall Drop-Size Distribution over Daegwanryeong Mountainous Area Using PARSIVEL Observations (PARSIVEL 측정 자료를 활용한 대관령 산악지역 강수입자분포 모형 연구)

  • Park, Rae-Seol;Jang, Min;Oh, Sung Nam;Hong, Yun-Ki
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.518-528
    • /
    • 2014
  • In this study, a model of rainfall drop-size distribution was modified using PARSIVEL-retrieved rainfall drop-size distribution over Daegwanryeong mountainous area. A prototype model (Modified ${\Gamma}$ distribution model) applicable for this area was decided through the comparative analysis between results from models proposed by preceding research and PARSIVEL-retrieved data over Daegwanryeong mountainous area. In order to apply the prototype model for Daegwanryeong region, the parameters (${\alpha}$, A, B) were made via sensitivity experiments and models of the rainfall drop-size distributions for five cases of rainfall rate were proposed. Results from the proposed five models showed high correlations with PARSIVEL-retrieved data ($R^2=0.975$). In order to suggest a generalized form of rainfall drop-size distribution, interaction equations between rainfall rates and parameters (${\alpha}$, A, B) were investigated. The generalized model of the rainfall drop-size distribution was highly correlated with PARSIVEL-retrieved data ($R^2=0.953$), which means that the proposed model from this study was effective for simulating the rainfall drop-size distribution over Daegwanryeong region. However, the proposed model was optimized for rainfall drop-size distribution over Daegwanryeong region. Therefore, broad observations of other regions are necessary in order to develop the representative model of the Korean peninsula.

Development and Evaluation of Computational Method for Korean Threshold Runoff (국내 유역특성을 반영한 한계유출량 산정기법 개발 및 평가)

  • Cho, Bae-Gun;Ji, Hee-Sook;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.875-887
    • /
    • 2011
  • The objective of this study is to develop and evaluate a Korean threshold runoff computation method. The selected study area is the Han-River basin and the stream channels in the study area are divided into 3 parts; natural channel and artificial manmade channel for small mountainous catchments, and main channel for master stream. The threshold runoff criteria for small streams is decided to 0.5 m water level increase from the channel bottom, which is the level that mountain climbers and campers successfully escape from natural flood damage. Threshold runoff values in natural channel of small mountainous area are computed by the results from the regional regression analysis between parameters of basin and stream channel, while those in artificial channel of small mountainous area are obtained from the data of basin and channel characteristics parameter. On the other hand, the threshold runoff values for master channel are used the warning flood level that is useful information for escaping guideline for riverside users. For verification of the threshold runoff computation method proposed in this study, three flash flood cases are selected and compared with observed values, which is obtained from SCS effective rainfall computation. The 1, 3, 6-hour effective rainfall values are greater than the corresponding threshold runoff values represents that the proposed computation results are reasonable.

Simulations of Changes in Wind Field Over Mountainous Terrains Using WRF and ENVI-met Numerical Models (WRF와 ENVI-met 수치 모델을 이용한 산악지형의 바람장 변화 모사)

  • Won, Myoungsoo;Han, Seonho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.1
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper we interpreted the changes in wind field over complex mountainous terrains. The results of our study can be applied for predicting the direction of fire spread and for establishing strategies for fire prevention. The study area is bounded by $12{\times}12$ km domains of the Samcheok's long-term ecological research (LTER) site located in the east coast, in which a large-fire had occurred from 7 to 13 April 2000. Because of the area's complex topography, we compared the result of the Weather Research and Forecasting (WRF) mesoscale model with those observed by four automated weather stations. The WRF simulation overestimated the wind speed by 5 to 8 m/s (~200%) in comparison with those from four automated weather stations. The wind directions observed by the AWSs were from various directions whereas those from WRF model were mostly west wind at all stations. Overall, the simulations by the WRF mesoscale models were not appropriate for the estimation of microscale wind fields over complex mountainous areas. To overcome such inadequacy of reproducing the wind fields, we employed the ENVI-met model over Samcheok's LTER site. In order to test the model's sensitivity with the terrain effects, experimental simulations were conducted with various initial conditions. The simulation results of the ENVI-met model showed a reasonable agreement in wind speeds (about 70% accuracy) with those of the four AWSs. Also, that the variations in wind directions agreed reasonably well with changes in terrain effect. We concluded that the ENVI-met model is more appropriate in representing the microscale wind field over complex mountain terrains, which is required to predict fire spread and to establish strategies for forest fire prevention.

A Trace of Landcover Change in a Landslide Vulnerable Area (산사태 취약지에서의 토지피복상태 변화 추적)

  • Yang, In-Tae;Chun, Ki-Sun;Park, Jae-Kook;Lee, Sang-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.375-378
    • /
    • 2007
  • Kangwondo area is mountainous and landslide happens easily during the rainy period in summer time. Especially, when there is torrential downpour caused by the unusual weather change, there will be greater possibility to see landslide. Another reason behind landslide is the continuous forest fire in these several years. Since the surface of the earth has been changed by the fire, when rainfall comes, landslide just happens easily. Also, it is reported that landcover condition, excepted rainfall condition, is the most effect for determining landslide susceptibility area. In this study, it is determined a landslide vulnerable area and landcover information is extracted from four satellite image(Landsat TM), about the landslide vulnerable area, which is pictured for each year. And which distribution change is analyzed.

  • PDF

Extraction of Snow Cover Area and Depth Using MODIS Image for 5 River Basins South Korea (MODIS 위성영상을 이용한 국내 5대강 유역 적설분포 및 적설심 추출)

  • Hong, U-Yong;Sin, Hyeong-Jin;Kim, Seong-Jun
    • KCID journal
    • /
    • v.14 no.2
    • /
    • pp.225-235
    • /
    • 2007
  • The shape of streamflow hydrograph during the early period of spring is very much controlled by the area and depth of snow cover especially in mountainous area. When we simulate the streamfolw of a watershed snowmelt, we need some information for snow cover extent and depth distribution as parameters and input data in the hydrological models. The purpose of this study is to suggest an extraction method of snow cover area and snow depth distribution using Terra MODIS image. Snow cover extent for South Korea was extracted for the period of December 2000 and April 2006. For the snow cover area, the snow depth was interpolated using the snow depth data from 69 meteorological observation stations. With these data, it is necessary to run a hydrological model considering the snow-related data and compare the simulated streamflow with the observed data and check the applicability for the snowmelt simulation.

  • PDF

Analysis of Landscape According to Land Use at Rural Area in Korea Using GIS Application (GIS기법을 이용한 농촌지역의 토지이용에 따른 경관유형 분석)

  • Hong, Seung-Gil;Seo, Myung-Chul;Jung, Pil-Kyun;Sonn, Yeon-Kyu;Park, Kwang-Lai;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • To designate rural landscape spatially, land use and topographic features for 383 of "Ri"s or "Dong", which is a basic administrative unit in Korea, were analyzed using GIS application. We have categorized rural landscape into three types such as agricultural, natural and urban landscape by land use. On the basis of spatial landscape pattern, rural area could be classified into 6 groups of Mountainous area (MA), Mountainous village area (MV), Developing mountainous village area (DM), Plain agricultural area (PA), Developing plain village area (DP) and Urbanized area (UA) according to the ratios of land for agricultural and urban use as the criteria. In MA, the ratio of upland area including orchard was slightly larger than that of paddy, while that of paddy was about 1.5 times larger than upland in other groups. Forested area was distributed more than two-thirds among natural landscape area in MA, MV and DM. In plain types (PA and DP), the ratio of irrigated paddy was extremely larger than partially irrigated paddy and the ratio of water body area among the natural landscape area was two times as large as that of forested area. The ratio of land for industrial and livestock facilities among urban landscape area were 20% or more in MV, DM and DP, and it means that these facilities are mainly distributed in the developing ru ral area where residents and industry are closely related each other. According to the relative ratio of sloped land of 6 categorized areas, the MA area have lots of land with E and F slopes and MV and DM have all grades of sloped land evenly distributed in relative to other types of rural landscape. It has been showed that PA, DP and UA occupied more than two-thirds of land with A or B slope. In case of the analysis of topological distribution in 6 types of rural landscape, there were overwhelmingly lager highland areas in MA. Conclusively, we have confirmed that 6 types of rural landscape classified by land use pattern in 3 categorized areas such as agricultural, natural and urban landscape area would be useful for the management of rural area. For development of sustainable agriculture and the preservation of rural amenity, proper management ways should be properly applied according to rural landscape patterns.