• Title/Summary/Keyword: Mountain clustering

Search Result 32, Processing Time 0.033 seconds

Identification of Fuzzy-Radial Basis Function Neural Network Based on Mountain Clustering (Mountain Clustering 기반 퍼지 RBF 뉴럴네트워크의 동정)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.69-76
    • /
    • 2008
  • This paper concerns Fuzzy Radial Basis Function Neural Network (FRBFNN) and automatic rule generation of extraction of the FRBFNN by means of mountain clustering. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values (degree of membership) directly rely on the computation of the relevant distance between data points. Also, we consider high-order polynomial as the consequent part of fuzzy rules which represent input-output characteristic of sup-space. The number of clusters and the centers of clusters are automatically generated by using mountain clustering method based on the density of data. The centers of cluster which are obtained by using mountain clustering are used to determine a degree of membership and weighted least square estimator (WLSE) is adopted to estimate the coefficients of the consequent polynomial of fuzzy rules. The effectiveness of the proposed model have been investigated and analyzed in detail for the representative nonlinear function.

  • PDF

Advanced Mountain Clustering Method (개선된 산 클러스터링 방법)

  • 이중우;권순학;손세호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.121-124
    • /
    • 2000
  • We introduce an advanced mountain clustering method which uses a normalized data space, a gaussian type mountain function and a deconstruction method using mountain slope. This is more useful than Yagers mountain method because it needs just one parameter to tune instead of three and finds out more resonable cluster centers. Computational examples are presented to show the validity of the advanced mountain method.

  • PDF

Advanced Mountain Clustering Method (개선된 산 클러스터링 방법)

  • 이중우;손세호;권순학
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • 본 논문에서는 정규화된 데이터 공간과 가우스함수에 의한 산 함수 형성 그리고 형성된 산의 기울기를 이용한 산봉우리 붕괴를 특징으로 하는 개선된 산 클러스터링 방법을 제안한다. 이 개선된 방법은 기존의 Yager 등에 의하여 제안된 방법이 조정해야 하는 매개변수가 3개이고 발견된 클러스터 중심 주위에 원치 않는 다른 중심이 발생할 수 있는데 반하여 단지 하나의 매개변수 $\omega$의 조정으로 더욱 타당한 중심을 찾아내는 점에서 유용하다 할 수 있다. 또한 매개변수 $\omega$에 대한 적절한 선정 방법을 제시하고, 수치 자료에 대한 컴퓨터 모의실험을 통하여 개선된 산 클러스터링 방법의 유용성을 입증한다.

  • PDF

New Sequential Clustering Combination for Rule Generation System (규칙 생성 시스템을 위한 새로운 연속 클러스터링 조합)

  • Kim, Sung Suk;Choi, Ho Jin
    • Journal of Internet Computing and Services
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2012
  • In this paper, we propose a new clustering combination based on numerical data driven for rule generation mechanism. In large and complicated space, a clustering method can obtain limited performance results. To overcome the single clustering method problem, hybrid combined methods can solve problem to divided simple cluster estimation. Fundamental structure of the proposed method is combined by mountain clustering and modified Chen clustering to extract detail cluster information in complicated data distribution of non-parametric space. It has automatic rule generation ability with advanced density based operation when intelligent systems including neural networks and fuzzy inference systems can be generated by clustering results. Also, results of the mechanism will be served to information of decision support system to infer the useful knowledge. It can extend to healthcare and medical decision support system to help experts or specialists. We show and explain the usefulness of the proposed method using simulation and results.

An Automatic Fuzzy Rule Extraction using an Advanced Quantum Clustering and It's Application to Nonlinear Regression (개선된 Quantum 클러스터링을 이용한 자동적인 퍼지규칙 생성 및 비선형 회귀로의 응용)

  • Kim, Sung-Suk;Kwak, Keun-Chang
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.182-183
    • /
    • 2007
  • 본 논문에서는 전형적인 비선형 회귀문제를 다루기 위해 슈뢰딩거 방정식에 의해 표현되는 Hilbert공간에서 수행되는 Quantum 클러스터링과 Mountain 함수를 이용하여, 수치적인 입출력데이터로부터 TSK 형태의 자동적인 퍼지 if-then 규칙의 생성방법을 제안한다. 여기서 슈뢰딩거 방정식은 분석적으로 확률함수로부터 유도되어질 수 있는 포텐셜 함수를 포함한다. 이 포텐셜의 최소점들은 데이터의 특성을 포함하는 클러스터 중심들과 관련되어진다. 그러나 이들 클러스터 중심들은 데이터의 수와 같으므로 퍼지 규칙을 생성하기 어려울 뿐만 아니라 수렴속도가 느린 문제점을 가지고 있다. 이러한 문제점들을 해결하기 위해서, 본 논문에서는 밀도 척도에 기초한 클러스터 중심의 근사적인 추정에 대해 간단하면서 효과적인 Mountain 함수를 이용하여 효과적인 클러스터 중심을 얻음과 동시에 적응 뉴로-퍼지 네트워크의 자동적인 퍼지 규칙을 생성하도록 한다. 자동차 MPG 예측문제에 대한 시뮬레이션 결과는 제안된 방법이 기존 문헌에서 제시한 예측성능보다 더 좋은 특성을 보임을 알 수 있었다.

  • PDF

An Adaptive Reclosing Scheme Based on the Classification of Fault Patterns in Power distribution System (사고 패턴 분류에 기초한 배전계통의 적응 재폐로방식)

  • Oh, Jung-Hwan;Kim, Jae-Chul;Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.3
    • /
    • pp.112-119
    • /
    • 2001
  • This paper proposes an adaptive reclosing scheme which is based on the classification of fault patterns. In case that the first reclosing is unsuccessful in distribution system employing with two-shot reclosing scheme, the proposed method can determine whether the second reclosing will be attempted of not. If the first reclosing is unsuccessful two fault currents can be measured before the second reclosing is attempted, where these two fault currents are utilized for an adaptive reclosing scheme. Total harmonic distortion and RMS are used for extracting the characteristics of two fault currents. And the pattern of two fault currents is respectively classified using a mountain clustering method a minimum-distance classifier. Mountain clustering method searches the cluster centers using the acquired past data. And minimum-distance classifier is used for classifying the measured two currents into one of the searched centers respectively. If two currents have the different pattern it is interpreted as temporary fault. But in case of the same pattern, the occurred fault is interpreted as permanent. The proposed method was tested for the fault data which had been measured in KEPCO's distribution system, and the test results can demonstrate the effectiveness of the adaptive reclosing scheme.

  • PDF

Clustering Method for Reduction of Cluster Center Distortion (클러스터 중심 왜곡 저감을 위한 클러스터링 기법)

  • Jeong, Hye-C.;Seo, Suk-T.;Lee, In-K.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.354-359
    • /
    • 2008
  • Clustering is a method to classify the given data set with same property into several classes. To cluster data, many methods such as K-Means, Fuzzy C-Means(FCM), Mountain Method(MM), and etc, have been proposed and used. But the clustering results of conventional methods are sensitively influenced by initial values given for clustering in each method. Especially, FCM is very sensitive to noisy data, and cluster center distortion phenomenon is occurred because the method dose clustering through minimization of within-clusters variance. In this paper, we propose a clustering method which reduces cluster center distortion through merging the nearest data based on the data weight, and not being influenced by initial values. We show the effectiveness of the proposed through experimental results applied it to various types of data sets, and comparison of cluster centers with those of FCM.

A Multiple Model Approach to Fuzzy Modeling and Control of Nonlinear Systems

  • Lee, Chul-Heui;Seo, Seon-Hak;Ha, Young-Ki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.453-458
    • /
    • 1998
  • In this paper, a new approach to modeling of nonlinear systems using fuzzy theory is presented. So as to handle a variety of nonlinearity and reflect the degree of confidence in the informations about system, we combine multiple model method with hierarchical prioritized structure. The mountain clustering technique is used in partition of system, and TSK rule structure is adopted to form the fuzzy rules. Back propagation algorithm is used for learning parameters in the rules. Computer simulations are performed to verify the effectiveness of the proposed method. It is useful for the treatment fo the nonlinear system of which the quantitative math-approach is difficult.

  • PDF

Improving the G-K Clustering Performance using the Modified Mountain Method (변형된 Mountain 방법을 이용한 G-K 클러스터링 성능 개선)

  • Kim, Sung-Suk;Jeon, Byeong-Seok;Kim, Joo-Sik;Ryu, Jeong-Woong;Lhee, Chin-Gook
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2546-2548
    • /
    • 2003
  • G-K 클러스터링이 가지는 우수한 클러스터 분류 성능에도 불구하고 데이터의 편중 및 분포 밀도에 의하여 클러스터링의 결과과 만족스럽지 못하는 경우가 발생한다. 제안된 방법에서는, G-K 클러스터링에서 데이터의 분포 및 밀도 등과 같은 다양한 조건에 대한 문제를 동시에 고려함으로써 클러스터링 결과를 개선한다. G-K 클러스터링에서 일부 파라미터의 수동적 파라미터 결정 방법을 Mountain 방법을 이용하여 능동적인 알고리즘으로 대치하여 클러스터 최적화 과정을 더욱 용이하게 한다. 이러한 클러스터링의 장점은 뉴로-퍼지 모델의 규칙 감소와 성능개선으로 나타나며 이를 시뮬레이션을 통하여 보이고자 한다.

  • PDF

Analysis of Management Unit on Forest Area for Active Mountain Villages - Case of Ishigawa-gen in Japan - (산촌 활성화를 위한 산림권역의 경영단위분석 - 일본 이시가와현의 예를 중심으로 -)

  • Lee, Sung-Gie;Son, Seog-Gu;Jeong, Jin-Heon;Shin, Byung-Cheol;Chung, Young-Gyo
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.989-995
    • /
    • 2006
  • Using the principal component analysis and clustering Forest resources are consistently necessary in the future. It takes much time to produce and breed them. However it is difficult to do due to recent social situation. Considering global environment, forest policy should be considered as a global scale rather than a regional one. At least, the policy needs a national scale concern. In order to support forestry, elementary data are needed. In this study, forest characteristics in Ishigawa-gen province have been analyzed through main component analysis and clustering. The results are shown in fig.5 and fig.6.