• Title/Summary/Keyword: Mount time

Search Result 221, Processing Time 0.026 seconds

Eigen-Analysis of Engine mount system with Hydraulic Mount (하이드로릭 마운트가 장착된 지지계의 고유치 해석)

  • 고강호;김영호
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.800-805
    • /
    • 2000
  • To determine the modal matrix and modal frequency of engine mount system, we most solve so-called eigen-value problem. However eigen-value problem of engine mount system with hydraulic mount can not be solved by general eigne-analysis algorithm because the properties of hydraulic mount vary with frequency. so in this paper the method for modal analysis of rigid body motions of an engine supported by hydraulic mount is proposed. Natural frequencies and mode shapes of this nonlinear system are obtained by using complex exponential method and Laplace transformation method. In time domain, impulse response functions are calculated by (two-sided) discrete inverse Fourier Transformation of forced frequency response functions achieved by Laplace transformation of the differential equation of motion. Considering the fact that frequency response functions synthesized by modal parameters form proposed method are in good agreement with original FRFs, it is proved that the proposed method is very efficient and useful for the analysis of eigne-value problem of hydraulic engine mount system.

  • PDF

Development of Viscous Cabin Mount for Excavator (액체봉입형 Viscous 굴삭기 Cabin Mount 개발)

  • 김원영;전범석;박외경;강하근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.339-344
    • /
    • 1997
  • Samsung Ltd. has developed a new-type cab mount for specific use on construct ion machinery subjected to strong vibration and multi-directional impact force. These all make it possible to achieve an excellent damping effect over a wide frequency range against large amplitude vibration as well as excellent insulation against small-amplitude vibration. This new mount make lower vibration and noise levels while increasing riding comfort at the same time. Characteristics of Cab mount were optimized through computer simulation, advanced bench testing, ODS testing, and a real equipment offroad testing.

  • PDF

Optimal Design of Nonlinear Hydraulic Engine Mount

  • Ahn Young Kong;Song Jin Dae;Yang Bo-Suk;Ahn Kyoung Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.768-777
    • /
    • 2005
  • This paper shows that the performance of a nonlinear fluid engine mount can be improved by an optimal design process. The property of a hydraulic mount with inertia track and decoupler differs according to the disturbance frequency range. Since the excitation amplitude is large at low excitation frequency range and is small at high excitation frequency range, mathematical model of the mount can be divided into two linear models. One is a low frequency model and the other is a high frequency model. The combination of the two models is very useful in the analysis of the mount and is used for the first time in the optimization of an engine mount in this paper. Normally, the design of a fluid mount is based on a trial and error approach in industry because there are many design parameters. In this study, a nonlinear mount was optimized to minimize the transmissibilities of the mount at the notch and the resonance frequencies for low and high-frequency models by a popular optimization technique of sequential quadratic programming (SQP) supported by $MATLAB^{(R)}$subroutine. The results show that the performance of the mount can be greatly improved for the low and high frequencies ranges by the optimization method.

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.351-356
    • /
    • 2009
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological (MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) using HILS method and presented in time and frequency domain.

  • PDF

Optimizing and Identification of Design Parameters of a Cylindrical Hydraulic Engine Mount by an Optimization Method (최적화 기법에 의한 원통형 유체 엔진마운트의 설계변수 동정 및 최적화)

  • Ahn, Young-Kong
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.66-73
    • /
    • 2017
  • In order to identify the design parameters of a hydraulic engine mount with a nonlinear characteristics, an experimental method has been used generally. The method takes a considerable time and expense because of preparing an experimental apparatus, conducting a test, and analyzing results. Therefore, this paper presents a simple method to identify the design parameters of a cylindrical hydraulic engine mount, and optimize the design parameters. The physical model and mathematical equations of the mount were derived, and values of the design parameters of the mount were identified by optimization method with minimizing difference between the analytical results with the equations and the experimental results. This method is more simpler than the conventional experiment method and identify successfully the design parameters. In addition, the technique can optimize the design parameters of the mount to improves the isolation performance of the mount.

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological(MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three point mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) using HILS method and presented in time and frequency domain.

A Study on Development of an Active Hybrid Mount for Naval Shipboard Equipment (함정 탑재장비용 능동 하이브리드 마운트 개발에 대한 연구)

  • Moon, S.J.;Choi, S.M.;Jeong, J.A.;Choi, S.B.;Jung, W.J.;Koo, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.685-692
    • /
    • 2010
  • A hybrid mount for shipboard machinery installed on naval ships was developed. The mount is combined with a rubber mount and a piezostack actuator. The rubber mount is one of the most popular and effective passive mounts to have been applied to various vibration systems to date. The piezostack actuator is featured by a fast response time, small displacement and low power consumption. Through a series of experimental tests conducted in accordance with MIL-M-17185A(SHIPS), MIL-M-17508F(SH), and MIL-S-901D which are US military specifications related to the performance requirements of the mount, it has been confirmed that the hybrid mount shows more effective performance for use in naval ships.

A Sliding Mode Control for an Engine Mount Using Magneto-Rheological Fluid (MR유체를 이용한 엔진마운트의 슬라이딩모드제어)

  • 이동길;안영공;정석권;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1144-1149
    • /
    • 2001
  • In this paper, a sliding mode controller of a fluid engine mount using MR (Magneto-Rheological) fluid was discussed When the MR fluid is applied to a fluid mount, resistance of MR fluid can be controlled by electro-magnetic valve installed in the inertia track. Since the rheological property of the MR fluid shows a function of shear rate, the damping characteristics of the mount will be change according to the frequency. Changing an applied magnetic field to the valve changes the property of the mount, such as the resistance of the MR fluid, the notch and the resonant frequencies due to the fluid passing, quantity of the fluid passing, the effective piston area of the volumetric damping and stiffness. Therefore, the fluid mount using MR fluid can be regarded as a variable structure system The sliding mode control known well as a particular type of variable structure control was introduced in this study. The sliding mode control, which has inherent robustness, is also expected to improve the control performance in the engine mount The sliding mode controller for the mount formatted by taking into account the response property with a time constant to MR fluid and the variable mount property. The motion equations of the fluid mount are derived from Newton's law of motion and used in numerical simulation. Numerical simulations illustrate the effectiveness of the sliding mode controller.

  • PDF

Evaluation of Vibration Control Performance of Camera Mount System for UAV (무인항공기 임무장비용 압전 마운트 시스템의 진동 제어 성능 평가)

  • Oh, Jong-Suk;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.407-412
    • /
    • 2009
  • In the present work, vibration control performance of active camera mount system for unmanned aero vehicle (UAV) is evaluated. An active mount featuring inertia type of piezostack actuator is designed and manufactured. Then, vibration control performances are experimentally evaluated. A camera mount system with four active mounts is constructed and mechanical model is established. The governing equation for the camera mount system is obtained and control model is constructed in state space model. Sliding mode controller which has inherent robustness to external disturbance is designed and implemented to the system. Vibration control performances are evaluated at each mount and center of gravity point. Effective vibration performances are obtained and presented in time and frequency domains.

  • PDF

Evaluation of Vibration Control Performance of Camera Mount System for UAV (무인항공기 임무장비용 압전 마운트 시스템의 진동 제어 성능 평가)

  • Oh, Jong-Suk;Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1315-1321
    • /
    • 2009
  • In the present work, vibration control performance of active camera mount system for unmanned aero vehicle(UAV) is evaluated. An active mount featuring inertia type of piezostack actuator is designed and manufactured. Then, vibration control performances are experimentally evaluated. A camera mount system with four active mounts is constructed and mechanical model is established. The governing equation for the camera mount system is obtained and control model is constructed in state space model. Sliding mode controller which has inherent robustness to external disturbance is designed and implemented to the system. Vibration control performances are evaluated at each mount and center of gravity point. Effective vibration performances are obtained and presented in time and frequency domains.