• 제목/요약/키워드: Motors and drives

검색결과 216건 처리시간 0.027초

고압 유도전동기의 구동을 위한 소프트-스타터의 대용량 파워스텍 구현 (Implementation of Soft-starter with Large Scale Power Stack for High Voltage Induction Motor Driving)

  • 유두영;전희종;손진근
    • 전기학회논문지P
    • /
    • 제65권2호
    • /
    • pp.88-93
    • /
    • 2016
  • Soft starters are used with large induction motors in blowers, fans, pumps and the crane hoist drives. AC voltage controllers are used as soft starters in induction motors for starting and to adjust its speed. Soft-starter starting system uses phase control method of input electric source through the setting of the thyristor(SCR) firing angle ${\alpha}$, and it can control input electric source stably and continuously from beginning of starting to ending of starting. In this paper, it is verified that power stack of high-voltage with SCR series system possesses dielectric strength and input electric source is controlled stably by phase control. Especially, from the driving experimental of proposed soft-starter operating, a smoothing acceleration and inrush current decrease can be achieved by the series SCR trigger.

Digital Implementation of PWM Techniques for Two-phase Eight-switch Inverter fed Brushless DC Motor Drives

  • Lin, Hai;You, Yong-Min;Cheon, Sung-Rock;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.295-303
    • /
    • 2013
  • This paper reports an investigation of pulse width modulation (PWM) techniques for two-phase brushless DC (BLDC) motors fed by a two-phase eight-switch inverter in a fan application. The three-phase BLDC motor is widely applied in industry; however, a lower-cost two-phase BLDC motor and drive circuit has been greatly in demand in recent years. In this paper, we introduce a mathematical model of the two-phase BLDC motor with sinusoidal back electromotive forces (EMFs) based on traditional three-phase BLDC motors. To simplify the drive algorithm and speed up its application, we analyze the principle of block commutation for a two-phase BLDC motor drive in the 180-electrical-degree conduction mode, and we further propose five PWM schemes to improve the commutation performance of the two-phase BLDC drive. The effectiveness of the proposed PWM methods is verified through experiments.

Rotor Position Sensing Method for Switched Reluctance Motors Using an Indirect Sensor

  • Shin Duck-Shick;Yang Hyong-Yeol;Lim Young-Cheol;Freere Peter;Gurung Krishna
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.173-179
    • /
    • 2005
  • In this paper, a very low cost and robust sensing method for the rotor position of a TSRM(Toroidal Switched Reluctance Motors) is described. Position information of the rotor is essential for SRM drives. The rotor position sensor such as an opto-interrupter or high performance encoder is generally used for the estimation of rotor position. However, these discrete position sensors not only add complexity and cost to the system but also tend to reduce the reliability of the drive system. In order to solve these problems, in the proposed method, rotor position detection is achieved using voltage waveforms induced by the time varying flux linkage in the search coils, and then the appropriate phases are excited to drive the SRM. But the search coil's EMF is generated only when the motor rotates. Therefore the rotor position sensing method using squared Euclidean distance at a standstill is also examined. The simulation and experimental results are presented to verify the performance of the proposed method in this paper.

A Five-Phase Induction Motor Speed Control System Excluding Effects of 3rd Current Harmonics Component

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.294-303
    • /
    • 2011
  • In this paper an effective five-phase induction motor (IM) and its drive methods are proposed. Due to the additional degrees of freedom, the five-phase IM drive presents unique characteristics for enhancing the torque producing capability of the motor. Also the five-phase motor drives possess many other advantages when compared to traditional three-phase motor drives. Some of these advantages include, reducing the amplitude and increasing the frequency of the torque pulsation, reducing the amplitude of the current without increasing the voltage per phase and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated winding, the produced back electromotive force (EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus the third harmonic of the currents. For demonstrating the superior performance of the proposed five-phase IM, the motors are also analyzed on the synchronously rotating reference frame. To supply trapezoidal current waveform and to exclude the effect of the $3^{rd}$ harmonic current, a new control stratagem is proposed. The proposed control method is based on direct torque control (DTC) and rotor flux oriented control (RFOC) of the five-phase IM drives. It is able to reduce the acoustical noise, the torque, the flux, the current, and the speed pulsations during the steady state. The DTC transient merits are preserved, while a better quality steady-state performance is produced in the five phase motor drive for a wide speed range. Experimental results clearly demonstrated a more dynamic steady state performance with the proposed control system.

유도전동기 드라이브에서의 단위전류당 최대토크적응 제어기의 다운전점에서의 성능 연구 (Performance of Adaptive Maximum Torque Per Amp Control at Multiple Operating Points for Induction Motor Drives)

  • 권춘기;공용해
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.584-593
    • /
    • 2018
  • 유도전동기를 고효율로 제어하기 위한 다양한 연구가 진행되어 왔다. 그 중에서 단위전류당 최대토크 제어기는 최소한의 고정자 전류로 원하는 토크를 제공하기 때문에 유도전동기 드라이브에서 고효율의 동작을 제공한다. 이는 유도전동기를 수학적으로 정밀하게 표현하는 대안모델을 기반으로 제어기가 설계되었기 때문이다. 그러나, 온도 변화에 따른 회전자 저항의 변이는 대안모델의 파라미터와 실제의 유도전동기의 파라미터의 불일치가 발생하여 단위전류당 최대토크 성능을 심각하게 저해하고 단위전류당 최대토크 제어 조건을 만족하지 못하게 하게 있다. 이러한 유도전동기의 운전시에 발생하는 열적 상승으로 인한 파라미터 값의 변화를 고려하는 단위전류당 최대토크적응 제어기가 제안되었다. 본 논문에서는 단위전류당 최대토크적응 제어기가 다수의 운전영역에서도 최소의 고정자 전류로 원하는 토크를 성취하는지를 검토하였다. 실험을 통한 연구에서 회전자의 온도가 증가하더라도 다수의 운전영역에서 25Nm의 토크 명령에서 5%의 차이가 존재하더라도 토크 명령을 정확하게 추구하고 또한, 원하는 토크를 최소한의 고정자 전류로 얻어짐을 확인함으로써 단위전류당 최대토크적응 제어기의 우수성을 검증하였다.

모드 전환 상수를 이용한 듀얼 모드 하이브리드 해석 방법 (Analysis of dual-mode hybrid by using mode change parameter)

  • 김남욱;양호림;안국현;조성태;박영일;이장무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.539-542
    • /
    • 2006
  • Many researches about next generation vehicles are trending toward HEV which has better fuel economy than an internal-combustion engine. But existing HEV has some defects at specific running states(eg. highway running It is possible that dual-mode hybrid system overcomes that defects. Mode change parameter, ${\gamma}$ helps to analyse the mode changing of dual mode hybrid and is applied at a numerical analysis on testing the performance. There is an additional constraint when vehicles drive on engine mode. No power assistance of battery applies on engine mode. Because vehicles must be sustained by only engine power while vehicle drives on constant speed mode. At the conclusion of this paper, graphs show the ability of motors that satisfy the equilibrium of the lever system. Designers can roughly determine capacities of the motors, parameters of the lever system by this analysing method.

  • PDF

MODELING OF IRON LOSSES IN PERMANENT MAGNET SYNCHRONOUS MOTORS WITH FIELD-WEAKENING CAPABILITY FOR ELECTRIC VEHICLES

  • Chin, Y.K.;Soulard, J.
    • International Journal of Automotive Technology
    • /
    • 제4권2호
    • /
    • pp.87-94
    • /
    • 2003
  • Recent advancements of permanent magnet (PM) materials and solid-state devices have contributed to a substantial performance improvement of permanent magnet machines. Owing to the rare-earth PMs, these motors have higher efficiency, power factor, output power per mass and volume, and better dynamic performance than induction motors without sacrificing reliability. Not surprisingly, they are continuously receiving serious considerations for a variety of automotive and propulsion applications. An electric vehicle (EV) requires a high-effficient propulsion system having a wide operating range and a capability of generating a high peak torque for short durations. The improvement of torque-speed performance for these systems is consequently very important, and researches in various aspects are therefore being actively pursued. A great emphasis has been placed on the efficiency and optimal utilization of PM machines. This requires attention to many aspects related to the machine design and overall performance. In this respect, the prediction of iron losses is particularly indispensable and challenging, especially for drives with a deep field-weakening range. The objective of this paper is to present iron loss estimations of a PM motor over a wide speed range. As aforementioned, in EV applications core losses can be significant during high-speed operation and it is imperative to evaluate these losses accurately and take them into consideration during the motor design stage. In this investigation, the losses are predicted by using an analytical model and a 2D time-stepped finite element method (FEM). The results from different analytical approaches are compared with the FEM computations. The validity of each model is then evaluated by these comparisons.

공작기계의 절삭공정 소비 에너지 예측기술 (Prediction of Machine Tool's Energy Consumption during the Cutting Process)

  • 이찬홍;황주호;허세곤
    • 한국정밀공학회지
    • /
    • 제32권4호
    • /
    • pp.329-337
    • /
    • 2015
  • In this paper, a simulation based estimation method of energy consumption of the spindle and feed drives for the NC machine tool during the cutting process is proposed. To predict energy consumption of the feed drive system, position, velocity, acceleration and jerk of the table are analyzed based on NC data and then the power and energy are calculated considering friction force and mass of the stages. Energy consumption of the spindle is estimated based on models from acceleration motion of rotating parts, friction torque and power loss of motors. Moreover, simulation models of cutting power and energy for the material removal along the NC tool paths are proposed.

삼성 파라 스카라 로봇시스템 (SAMSUNG FARA SCARA robot system)

  • 김성권;신기범;김동일;전재욱;김영철;오인환;황찬영;임상권;김호규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.504-510
    • /
    • 1991
  • SAMSUNG Electronics has developed a SCAR.A robot system, SM3, which is applicable to several assembly, inspection, and adjustment tasks. This robot system drives by AC servo motors has attained a .theta.1 and .theta.2 axis maximum composite speed of 5.4 m/sec, a repeatability of .+-.05 mm, and a cycle time of 1.2 sea. The robot controller based on three 8086 and one 8087 processors consists of the main controller, the joint position controller, and the motor controller. The robot controller has plentiful self-diagnosis and control capabilities, and can be interfaced to other external device. The robot language FARAL Is designed such that every task is easily programmed. In this paper, the main features of the body, controller, and FARAL of SM3 will be described. In particular, the control method designed for a stable and fast robot motion will be explained. Finally, the future development will be addressed.

  • PDF

Tall Buildings and Elevator Technologies: Improving Energy Efficiency

  • Kheir Al-Kodmany
    • 국제초고층학회논문집
    • /
    • 제12권2호
    • /
    • pp.169-177
    • /
    • 2023
  • The massive increase in elevator usage and a severe demand for energy efficiency have prompted manufacturers to develop various innovative technologies, including AC and gearless motors, machine-room-less (MRL) technologies, regenerative drives, elevator ropes, and LED lighting. In addition, manufacturers are providing software solution systems such as destination dispatching systems, people flow solutions, standby mode, and predictive maintenance applications. Future technologies include electromagnetic levitation, circulating multi-car elevator systems, robotization, and drones. This article outlines elevators' technological advancements. It discusses how to harness new technologies and apply them to aging, modern, and future buildings.