• Title/Summary/Keyword: Motor starting analysis

Search Result 129, Processing Time 0.023 seconds

A Study on the Forging Process Development of the Commutator of an Automotive Starting Motor (자동차용 시동 모터 정류자의 단조공정 개발에 관한 연구)

  • 서명규;배원병;정호승;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.905-909
    • /
    • 2002
  • Commutators of a starting motor for automobiles has been produced through various processes such as forging, segmenting, and assembling. And the conventional method producing an automotive motor commutator is not appropriate for saving material and cost, because it makes each segment separated one by one. Therefore a new process design is required in oder to avoid the assembling process. In this study, a new process design of the commutator of an automotive starting motor has been carried out to save material and manufacturing time by FE analysis. In the FE analysis, three forging processes are proposed for producing the copper(ASTM Cl1000) commutators of a starting motor. And forging experiments are performed to make an unsegmented commutator in order to verify the theoretically proposed process. And then, in order to get the final product, the forged commutator is passed through various postprocessing such as resin terming, and machining. From the experimental result, the forging process proposed from the FE analysis is verified to be an economical method for producing the commutator of an automotive starting motor.

  • PDF

A Study on Improving High-Power Induction Motor Starting (대용량 유도전동기 기동 개선에 관한 연구)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.2
    • /
    • pp.178-184
    • /
    • 2016
  • The motor power of the industry to use the electric energy is gradually increased. The electric motor generates a voltage drop in the starting current during startup. The starting current is started it is difficult to have an adverse effect on neighboring power systems with large motor starting when the voltage drop across the power grid. In addition to that the motor torque according to the load depending on the size of the rotation speed is changed to a motor start-up speed is important. However, the distance to the emergency generator transformers or motors from the motor capacity is smaller but short and difficult to maneuver the theory and practice of the operating characteristics of the starting characteristics of the motor used a lot of large industrial plants were measured and analyzed. Therefore, this study investigated the motor starting Analysis and interpretation for the relationship with the large motor starting torque and speed during motor starting.

Characteristics Analysis for Reactor Starting Method of 3-Phase Induction Motor Considering Saturation (포화성분을 고려한 3상 유도전동기 리액터 기동 특성 분석)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.65-70
    • /
    • 2012
  • Induction motor is the most widely used to obtain the driving force in the industrial site. Induction motor generates a high current at startup. Most of starting currents are often more than five times of rated current. This high starting current can cause problems such as the voltage drop in the system. In order to solve these problems, if the motor capacity is large, generally we use reactor starting method rather than direct on line starting method. When a high startup current passes through reactor, reactor can serve as a nonlinear elements. In this study, we analyzed that the current, torque and power of the induction motor are different from the change of linear and nonlinear components of the reactor magnetic field.

Numerical Analysis on Flow Characteristics of Air Starting Motor for Marine Medium-Speed Diesel Engine (선박용 중형디젤엔진 공기시동모터의 유동특성에 관한 수치해석)

  • Yang, Su-Young;Kim, Tae-Hun;Lee, Yeon-Won;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.545-552
    • /
    • 2009
  • The marine medium-speed diesel engines are operated by two methods; one is the electric motors, and the other air starting motors. Even though air starting motor is dependent of the engine types and sizes, it has been widely used in this area due to its simplicity, convenience and reliability. However most of them are currently imported from overseas due to the lack of the cutting-edge technology in terms of design and manufacturing. Therefore, from the point of this view, the air starting motor needs to be produced by our own techniques. The purpose of this paper is to give the designing parameters in order to make a proper "Air Starting Motor" using CFD. The aerodynamic approaches were given to understand the internal flow characteristics of the air starting motor. In addition, we have carried out the effects of tip clearance. In the calculations the tip clearance of air starting motor has been varied between 0% and 5.7% of blade span.

Analysis of Soft Start-up Characteristics of the Induction Motor Considering the Firing Angle (점호각을 고려한 유도전동기의 소프트 기동 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1007-1012
    • /
    • 2016
  • Induction motors are used widely in driving load of a fluid, such as a pump or a fan in the industry. Induction motor has been generated the voltage drop by the occurrence of a high current during startup. In addition, high start-up current can act as a mechanical stress on the shaft of the motor. So there is need a way to reduce the starting current. Soft start method is one of the many ways to reduce the starting current. This method uses silicon-controlled rectifiers(SCRs) for varying value of the voltage applied to the motor. There is a case for fixing or changing the thyristor firing angle to adjust the magnitude of the voltage. Starting power factor of induction motor is very low compared to the normal operation. Soft starting with the firing angle fixed needs to be considered a low power factor at startup. In this study, we compared the direct start characteristics and soft start characteristics considering the low power factor at the time of start-up. It was possible to confirm that the starting current and the voltage drop is present differently according to the firing angle.

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

The Torque Characteristics Analysis of the Single-Phase Switched Reluctance Motor According to the Starting Method (기동 방법에 따른 단상 SRM의 토크 특성 해석)

  • Kim, Jun-Ho;Kim, IL-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.40-46
    • /
    • 2012
  • The single-phase switched reluctance motor(SRM) has only one inductance variation and the positive torque is generated in the restricted section. So, it cannot be started by itself. To solve this problem, many researchers have addressed the several starting method for the single-phase SRM. This paper is focused on the torque characteristics of the single-phase SRM according to starting method. The four major starting method - permanent magnet, saturable stator pole, to grade the rotor, stepped rotor pole - is selected to analyze the torque characteristics. The analysis model of each starting method is designed to changed the pole shape or inserting other material in the basic model. The torque characteristics of each analysis model is obtained by using FEM analysis. The FEM analysis is performed at incremental rotor positions over half inductance cycle in any one pole with 250AT, 500AT, 750AT. The distortion factor of each analysis model is analyzed through the FFT to compare the distortion between basic model and four analysis model.

Induction Motor Starting Characterization with Power Factor Correction Capacitors (역률개선 콘덴서를 이용한 유도전동기 기동특성 분석)

  • Son, Seok-Geum
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.206-212
    • /
    • 2017
  • Induction motor torque is the reactive power is needed which corresponds to the exciting current to generate the magnetic flux as the product of current and flux. For use in the method of supplying the required reactive power to the induction motor power factor correction apparatus using a lot of ways to supply in place of the power supply side, when using a power factor compensation device can reduce the apparent power, the power factor can be improved. However, the distance to the emergency generator transformers or motors from the motor capacity is smaller but short and difficult to maneuver the theory and practice of the operating characteristics of the starting characteristics of the motor used a lot of large industrial plants were measured and analyzed. Therefore, this study investigated the motor starting Analysis and interpretation for the relationship with the large motor starting torque and speed during motor starting.

Analysis of Starting Torque and Speed Characteristics for Squirrel Cage Induction Motor According to Material Properties of Rotor Slot

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.328-333
    • /
    • 2015
  • Squirrel cage induction motors have mostly been used for their small capacity because the starting torque is smaller than the starting current during start-up. However, as more and more mid-to-large capacity motors are developed, the demands for improvements in performance characteristics have also increased. In this study, the starting characteristics of squirrel cage induction motors were analyzed based on the rotor materials and shapes using a finite element method to provide design data suitable for different use purposes and capacities. We further completed analysis by combining electromagnetic equations deduced from Maxwell’s equations and the circuit equations of stators and rotors. A moving coordinator was introduced to rotate the rotor during the analysis, and the torques calculated via the finite element method were combined with the motion equations to calculate the position and angular velocity of the rotors at the next time, thereby analyzing the transient characteristics. The analysis results of the transient characteristics were applied to a 3-phase 4-pole 5-hp induction motor to calculate the starting torque, speed, and rotation angle of the rotors. In the reference model, the materials and shapes of the rotor slot were changed to copper and silicon copper and a deep slot, shallow slot, and long-neck-shaped slot.

Detent Torque of Parking Magnet Starting Device Installed in the Single-Phase Switched Reluctance Motor (단상 스위치드 릴럭턴스 모터에 설치된 영구자석 기동장치의 디텐트 토크)

  • Kim, Jun-Ho;Lee, Seung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.408-412
    • /
    • 2010
  • The single-phase switched reluctance motor(SRM) generates the positive torque in the restricted section. So, it can not started by itself and the torque ripple is heavier than poly-phase. For self-starting and fixing rotating direction, the rotor should be placed at the rising inductance slope when stationary. The parking permanent magnet locates the rotor in the fixed position, which can be started by it-self. It is very simple and cost effective but has some drawbacks. It affects the rotor during the operation, so the characteristics of motor, such as a torque, speed, and ripple are changed to go bad. This paper presents the detent torque of parking magnet starting device through the finite element analysis and experiments. The finite element analysis is performed at incremental rotor positions over one detent torque cycle for any one pole. The prototype, fabricated in the previous research, is used for the experiments. The inductance, instant torque, and detent torque are calculated using the terminal voltage and phase current. Finally, the finite element analysis result and the experiment result are compared for analysis and validity.