• Title/Summary/Keyword: Motor motion equation

Search Result 77, Processing Time 0.028 seconds

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

Development of In-wheel Motor for Power Add-on Drive Wheelchair (수전동 휠체어용 모터 개발)

  • Hong, Eung-Pyo;Park, Sei-Hoon;Oh, Hong-Seok;Ryu, Jae-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.992-999
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity, are easier to transport, and may be an excellent alternative for the typical manual or electric wheelchairs. The development of in-wheel motor for a PADW is the principal issues. In this paper, design, implementation, and testing of the permanent magnet synchronous motor (PMSM) for a PADW are presented. To design output power and torque of the motor, the equation of motion has been investigated. The design parameters were calculated and the dimension and shape of the motor which was limited by the In-wheel mechanism of the PADW were done by applying FEM and optimal design technique. The prototype of the motor mentioned above was fabricated with precise machining and assembling. Then the motor tested on dynamometer and the measured results of the motor were verified by comparing the design results. The fabricated motor was 80 mm in length with a diameter of 110 mm and small enough to be attached the driving unit of the PADW.

Topology Optimization of Muffler Hole of Rotary Compressor using GA (유전자 알고리즘을 이용한 회전식 압축기 머플러 토출구의 위상 최적설계)

  • ;Altay Dikec
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.790-795
    • /
    • 2002
  • The object of this research is limited to the reduction of compression process noise only among the main sources of compressor noise such as motor noise, compression process noise, and valve port flow noise. Thus the research is focused on the wave motion rather than the particle motion of sound wave travels. A muffler is a commonly used device to reduce the compression process noise, generated by the pressure pulsations caused by the cyclic compression process. In this research, the acoustic characteristics of the muffler are analyzed by using the normal gradient integral equation proposed by Wu and Wan. Moreover, a commercial code SYSNOISE developed by indirect variational boundary integral equation is also used to validate the results. For the noise reduction, the topology optimization technique using a genetic algorithm is used. The number, size and position of the muffler holes are considered as design variables. Compared with original design, the optimized design has very improved acoustic characteristics. Both numerical and experimental analyses are used to evaluate new design.

  • PDF

Dynamic Analysis of Double Excited 3-DOF Motor Modeling Using Equivalent Magnetic Circuit

  • Rhyu, Se-Hyun;Shin, Hye-Ung;Kim, Min-Soo;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.958-964
    • /
    • 2015
  • This paper implements a model of a double excited three-degree-of-freedom motor (3-DOF) coupled with a PI current controller for position control. The rotational trends of the rotor according to the applied steps are identified using a motion equation. The simulation model is a complete electrical and mechanical model of a 3-DOF motor, which mainly consists of mechanical torque equations, a nonlinear equivalent magnetic circuit, and a PI current controller. This machine is tested using the manufactured control board using the same conditions as in the simulation, where the experimental results also verify the accuracy of the simulation results.

The Stable Position Control of Hybrid type Linear Pulse Motor by Digital PI Control (디지털 PI 제어에 의한 HLPM의 안정된 위치제어)

  • Youn, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin;Maeng, In-Jae
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.637-645
    • /
    • 2000
  • This study was represented the improvement of the flexible position control for linear motion of hybrid type linear pulse motor(HLPM). The driving method used a minute 125 microstep drive instead of full step drive method. The digital control method was applied to the PI control for more stable position control, at this time the PI control parameters have gained by a Ziegler-Nichols turning method. The loop transfer function of control system was combined with both motor transfer function and digital PI control equation. Such, the proper for digital PI control system is verified to through the simulation and experimental result of the stability step response and bode plot with proper gain and phase margin.

  • PDF

Transient Characteristics of Electromagnet Type Linear Hybrid Motor (전자석형 리니어 하이브리드모터의 과도특성 해석)

  • Jeon, Hye-Jeong;Jeon, Woo-Jin;Lee, Ju;Kamiya, Yushi
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.879-881
    • /
    • 2000
  • This paper treats the electromagnet type linear synchronous motor with induction operation. The proposed motor consists of the primary winding energized by variable frequency supplies and the secondary having an additional solid-conductor besides the field finding. The conductor is useful for not only the self-starting but also the damping effect In the synchronous drive. From the investigation by the experiment and the finite element analysis coupled with both electric circuit and motion equation we verify that the proposed motor is effective for practical use.

  • PDF

A Study on the Steering Performance and Turning Radius of Four-Rows Tracked Vehicle on Hard Ground

  • Oh, Jaewon;Lee, Changho;Min, Cheonhong;Hong, Sup;Cho, Huije;Kim, Hyungwoo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.134-147
    • /
    • 2015
  • This study proposes a method to determine the effective angular velocity of each motor of a specific four-rows tracked vehicle (FRTV) in order to follow a given turning radius. The configuration of the four-rows tracked vehicle is introduced, and its dynamics analysis model is built using the DAFUL commercial software. The soil has been assumed to be hard ground, and the friction force between the ground and the tracked links is calculated using the Coulomb friction model. This paper uses a simulation to show that the error in the position increased with respect to the angle of the curvatures, so a method is proposed to compensate for the error in the motion of the motors. Various simulations are then carried out to verify the proposed formulation. The effects of the soil characteristics and the driving velocity will be further investigated in future studies.

A study on the computer simulation model of the closed moving system using the nutation force (폐쇄된 계의 장동 힘에 의한 이동장치의 컴퓨터 씨뮬레이션 모델에 관한 연구)

  • Chung, Byung-Tae
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.331-336
    • /
    • 2005
  • The closed movement produced vertically on the position of a motor is a notation movement produced by a notation force , while the horizontal movement can be shown by the coriolis force and the transverse force of realizing that the closed movement of the closed system is to be rotation motion. The notation movement is a vertical closed movement and by searching the equation which becomes an equation model, after comparing the simulation data from the equation model with data of a real device to use it into the computer simulation model, the additional variable elements were decided. As the result, the energy imbalance element is added as a variable about load which is relevant to friction coefficient and pole of a motor in the gravitational field. The simulation can be applied as a real physical law of the graphic game and haptic program.

  • PDF

Design and Characteristics Analysis of a Transverse Flux Type Switched Reluctance Motor (횡자속형 스위치드 리럭턴스 전동기의 설계 및 특성 해석)

  • Kim, Gyeong-Ho;Jo, Yun-Hyeon;Gu, Dae-Hyeon;Jeong, Yeon-Ho;Gang, Do-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • The paper proposes the characteristics analysis for a Transverse flux type Switched Reluctance Motor(TSRM) considering the nonlinear magnetic phenomena. To investigate the nonlinear parameters of magnetic equivalent circuit, the designed TSRM is analyzed by the 2D and 3D finite element method as functions of input current and angular displacement. On the base of FEM analysis results, the current, torque, back EMF and output power wave of TSRM are simulated from the motion equation by MATLAB/Simulink. The simulated performance characteristics for a 4-phase, 24-pole TSRM are verified by experimental results of a prototype TSRM.

The Modelling of Overhead Crane System (천장 크레인시스템의 모델링)

  • Lee, Jong-Gyu;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.166-171
    • /
    • 1999
  • An overhead crane system consists of trolley, girder, rope, object, trolley motor, girder motor, and hoist motor. An analytic model which derived from the modelling of the overhead crane system is nonlinear model which includes the swing and the twist angle of the object. this model consists of the equation of motion for motors and object. If the swing angle and the acceleration of Z for the object are small, this model becomes a simple nonlinear model which doesn't include the swing and the twist angle of the object. From the results of computer simulation, the characteristics of an actual overhead crane system could be predicted by the simple nonlinear model.

  • PDF