• Title/Summary/Keyword: Motor load test

Search Result 271, Processing Time 0.033 seconds

Improving the Performance of Machine Learning Models for Anomaly Detection based on Vibration Analog Signals (진동 아날로그 신호 기반의 이상상황 탐지를 위한 기계학습 모형의 성능지표 향상)

  • Jaehun Kim;Sangcheon Eom;Chulsoon Park
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.47 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • New motor development requires high-speed load testing using dynamo equipment to calculate the efficiency of the motor. Abnormal noise and vibration may occur in the test equipment rotating at high speed due to misalignment of the connecting shaft or looseness of the fixation, which may lead to safety accidents. In this study, three single-axis vibration sensors for X, Y, and Z axes were attached on the surface of the test motor to measure the vibration value of vibration. Analog data collected from these sensors was used in classification models for anomaly detection. Since the classification accuracy was around only 93%, commonly used hyperparameter optimization techniques such as Grid search, Random search, and Bayesian Optimization were applied to increase accuracy. In addition, Response Surface Method based on Design of Experiment was also used for hyperparameter optimization. However, it was found that there were limits to improving accuracy with these methods. The reason is that the sampling data from an analog signal does not reflect the patterns hidden in the signal. Therefore, in order to find pattern information of the sampling data, we obtained descriptive statistics such as mean, variance, skewness, kurtosis, and percentiles of the analog data, and applied them to the classification models. Classification models using descriptive statistics showed excellent performance improvement. The developed model can be used as a monitoring system that detects abnormal conditions of the motor test.

Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM (IPMSM 전동기의 비선형 적응 백스텝핑 속도 제어)

  • Jeon, Yong-Ho;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.855-864
    • /
    • 2011
  • In this paper, a nonlinear controller based on adaptive back-stepping method is proposed for high performance operation of IPMSM(Interior Permanent Magnet Synchronous Motor). First, in order to improve the performance of speed tracking a nonlinear back-stepping controller is designed. Since it is difficult to control the high performance driving without considering parameter variation, a parameter estimator is included to adapt to the variation of load torque in real time. In addition, for the efficiency of power consumption of the motor, controller is designed to operate motor with minimum current for maximum torque. The proposed controller is applied through simulation to the a 2-hp IPMSM for the angular velocity reference tracking performance and load torque volatility estimation, and to test the MTPA(Maximum Torque per Ampere) operation in constant torque operation region. The result verifies the efficacy of the proposed controller.

A Study on the Tolerance Band of Voltage Drop during Motor Startup for Refineries and Chemical Plants with Isolated Power Systems

  • Shin, Ho-Jeon;Cho, Man-Young;Chun, Hong-Il;Kim, Jin-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.486-493
    • /
    • 2017
  • Refineries and chemical plants with isolated power systems that have a limited power supply are more susceptible to voltage changes from disturbances compared to power systems connected with a power company. Furthermore, most loads in such cases are induction motor loads, and therefore, transient voltage characteristics when starting a high-capacity motor must be examined. In general, high-capacity motors are customized appropriately to the load performance curve by the manufacturer during the construction of an industrial plant. Subsequently, when complying with the voltage drop permitted by international standards during the design process, power supply equipment such as transformers and generators is overdesigned. Therefore, a novel analysis is necessary on standards for startup and constraint voltage drops, as well as on identifying the voltage drop limitations for starting high-capacity motors in refineries and chemical plants with isolated power systems. In this study, field tests on an industrial plant were conducted, and simulations modeled under conditions identical to those of the field test system were performed using the general-purpose program ETAP in order to compare the results.

Natural Aging Properties Analysis of HTPB Propellant (HTPB계 고체추진제의 자연노화 물성 분석)

  • Park, Jung-Ho;Ryu, Nam-Sun;Park, Jae-Beom;Jung, Gyoo-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Hydroxy-terminated polybutadiene (HTPB) propellants of solid rocket motors age differently under different storage temperatures. The shelf life of a solid rocket motor depends on the aging ratio of the HTPB propellant; it can be estimated through the viscoelastic properties by an aging test. This study analyzed the initial and natural aging properties during long-term storage. The initial properties were obtained from characterization and accelerated test results. The test results were obtained by analyzing the strain on cylindrical grains when a thermal load was applied.

A Study on the Life Characteristics of Lightweight Bearings (경량 베어링 수명 특성에 관한 연구)

  • Lee, Choong-Sung;Park, Jong-Won;Lim, Sin-Yeol;Kang, Bo-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.819-825
    • /
    • 2021
  • In the industry, the use of lightweight bearings is increasing to minimize motor power loss, and in particular, the application of next-generation systems such as robots and drones is increasing. Bearing manufacturers are producing lightweight bearings by changing the bearing material, but related researches is insufficient. In this paper, life test and structural analysis were performed for lightweight bearings, and shape parameters and scale parameters were derived based on the life test results. It was confirmed that the shape parameter was 2.52 and the scale parameter was 164 hours. As a result of calculating the dynamic load rating based on the B10 life, it was confirmed that the dynamic load rating of the lightweight bearing was 7% compared to the formula suggested by ISO 281. The reason is that the material of the retainer, which is a major failure part, is a polyamide 66 series that reacts sensitively to heat, so It is judged to show a lot of difference from the ISO 281 calculation formula.

Development of Clamping Force Estimation Algorithm and Clamp-force Sensor Calibration on Electromechanical Brake Systems (전동식 브레이크 시스템의 클램핑력 센서 교정 및 클램핑력 추정 알고리즘 개발)

  • Park, Giseo;Choi, Seibum;Hyun, Dongyoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.365-371
    • /
    • 2016
  • The electromechanical brake (EMB) is one of future brake systems due to its many advantages. For implementation of the EMB, the correct feed back about clamping force is necessary. Keeping commercialization of the EMB in mind, it is strongly demanded that an expensive load cell measuring the clamping force is replaced with an estimation algorithm. In addition, an estimation of the kissing point where the brake pads start to come into contact with a disk wheel is proposed in this paper. With these estimation algorithms, the clamping force can be expressed as a polynomial characteristic curve versus the motor angle. Also, a method for calibration of measured values by the load cell is proposed and used for an actual characteristic curve. Lastly, the performance of the proposed algorithms is evaluated in comparison with the actual curve on a developed EMB test bench.

Measurement of Mechanical Properties of Electroplated Nickel Thin Film for MEMS Application (미소 기전 시스템용 니켈 박막의 기계적 물성 측정)

  • Baek, Dong-Cheon;Park, Tae-Sang;Lee, Soon-Bok;Lee, Nag-Kyu;Choi, Tae-Hoon;Na, Kyoung-Hoan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1321-1325
    • /
    • 2003
  • Nickel thin film is one of the most important materials used in micromachined structure. To measure the mechanical properties of electroplated nickel thin film, two techniques are adopted and compared quantitatively with. One is nano-indentation test to measure the elastic modulus. The other is tensile test to measure not only elastic modulus but also yield strength and plastic deformation, ultimate strength. To perform the tensile test, the test apparatus was constructed with linear guided servo motor for actuation, load cell for force measurement and dual microscope for strain measurement.

  • PDF

An Innovative Solution for the Power Quality Problems in Induction Motor by Using Silica and Alumina Nano Fillers Mixed Enamel for the Coatings of the Windings

  • Mohanadasse, K.;Sharmeela, C.;Selvaraj, D. Edison
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1621-1625
    • /
    • 2015
  • Power quality has always been a concern of power engineers. Certainly an argument can be successfully made that most parts of power engineering have the ultimate objective to improve power quality. AC motors were widely used in industrial and domestic applications. Generally, AC motors were of two types: Induction and Synchronous motors. In motor many parameters like different load cycling, switching, working in hot weather and unbalances creates harmonics which creates major reasons for temperature rise of the motors. Due to high peak value of voltage, harmonics can weaken insulation in cables, windings and capacitors and different electronic components. Higher value of harmonics increase the motor current and decrease the power factor which will reduce the life time of the motor and increase the overall rating of all electrical equipments. Harmonics reduction of all the motors in India will save more power. Coating of windings of the motor with nano fillers will reduce the amount of harmonics in the motor. Based on the previous project works, actions were taken to use the enamel filled with various nano fillers for the coating of the windings of the different AC motors. Ball mill method was used to convert the micro particles of Al2O3, SiO2, TiO2, ZrO2 and ZnO into nano particles. SEM, TEM and XRD were used to augment the particle size of the powder. The synthesized nano powders were mixed with the enamel by using ultrasonic vibrator. Then the enamel mixed with the nano fillers was coated to the windings of the several AC motors. Harmonics were measured in terms of various indices like THD, VHD, CHD and DIN by using Harmonic analyzer. There are many other measures and indices to describe power quality, but none is applicable in all cases and in many instances, these indices may hide more than they show. Sometimes power quality indices were used as a basis of comparison and standardization. The efficiency of the motors was increased by 5 – 10 %. The thermal withstanding capacity of the motor was increased by 5º to 15º C. The harmonics of the motors were reduced by 10 – 50%.

A Study on the load control using electric inertia

  • Kim, Gil-Dong;Park, Hyun-Jun;Han, Young-Jae;Jang, Dong-Yuk;Jo, Jung-Min
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.128.1-128
    • /
    • 2001
  • A propulsion system apparatus is needed for a railroad vehicle to test and estimate propulsion performance. The electrical inertia simulator to facilitate the development and testing of propulsion systems, is presented in this paper. It is based on a vector-controlled Induction motor drive supplied from the AC mains through a double PWM converter that provides desirable features such as hi-directional power folw, nearly unity power factor and low harmonic factor at the Ac mains. A theoretical analysis is first presented, followed by a detailed simulation study to assess the overall system performance under dynamic conditions.

  • PDF

The study of propulsion control system (추진제어장치 특성 연구)

  • Kwon Il-Dong;Kim Dong-Myung;Chung Eun-Sung;Lee Sang-Jun;Choi Jong-Muk
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.291-298
    • /
    • 2005
  • This paper describes the characteristic feather of propulsion system adopting mass production. The train formation is composed of 4 cars by 2 Motor cars and 2 Train cars. Acceleration rate must be 3.0 km/h/s or more when the car starts up to 35km/h by 16ton of passenger load. The system information supervision is easy because the system is controlled to perfect digital circuits, all information of an action is stored in a memory and is managed. The control system is composed of a fully digital circuit and a high level software such as C language. The DSP TMS320C31 is used for main processor and has the capability of 50MHz, 32bit floating point operation and has a C compiler. Therefore, the implementation of control algorithm and the change of function are easy. VVVF inverter using IGBT conducted variable combined test, environment test using chamber, interface test and field test etc.

  • PDF