• Title/Summary/Keyword: Motor drive circuit

Search Result 309, Processing Time 0.019 seconds

Power Factor Correction Circuit For Inverter Air-Conditioner With A Parallel Configuration To Reduce The Material Cost (재료비 절감을 위한 병렬구조를 갖는 인버터 에어컨용 역률제어회로)

  • 정용채;정윤철;권경안
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.122-127
    • /
    • 1999
  • In this paper, the power factor correction circuit using a parallel drive method is proposed so that the high power inverter air-conditioner with 3[hp] compressor motor may obtain the cost down and the improved performance. The adequate design porcedures are presented to reduce the material costs by eliminating the power factor imprving LC filter and derating output capacitor and inverter switches. Using the determined components. the proto-type circuit with 6[kW] power consumption is built and tested to verify the operation of the proposed circuit.

  • PDF

A design of hybrid PWM inverter using microprocessor (마이크로프로세서를 이용한 하이브리드 PWM 인버터의 설계)

  • 노창주;임재문;박중순
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1987
  • In an effort to conserve electric power, variable voltage variable frequency pulse width modulated (PWM) inverters are being applied increasingly to the variable speed control of the induction motors. The use of the PWM technique in motor drive applications is considered advantageous in many ways. For industrial applications, the PWM drive obtains its DC input through simple uncontrolled rectification of the commercial AC line and is favored for its good power factor, good efficiency, its relative freedom regulation problem, and mainly for its ability to operate the motor with nearly sinusoidal current waveforms. The purpose of this paper is to design a three phase natural sampled PWM inverter using microprocessor with simple control algorithm and hybrid control circuit has been built to implement this PWM scheme. In this system, the microprocessor can be used only for calculations directly related to motor control tasks by the design of hybrid circuit which sends PWM signals to the motor.

  • PDF

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

Switched Reluctance Motors for Electric Drive of Overland Belt Conveyor

  • Ptakh, Gennady K.;Evsin, Nicholas F.;Zvezdunov, D. Alex;Rozhkov, Dmitry V.;Yakovenko, Alexander E.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.409-414
    • /
    • 2014
  • The parameters and operating characteristics of the switched reluctance motor (SRM) for the electric drive of the overland belt conveyor CLM-4500 have been presented. The motor power capacity has been equal to 1250 kW, the motor speed - 1000 min-1. SRM power supply has been provided by a three-phase voltage inverter and a 12-pulse rectifier circuit. The group electric drive has been installed on sections number 2 and 3, 3770 m and 3375 m length, respectively, on the areas of "Berezovsky Strip" JSC, a member of the Siberian Coal Energy Company.

Design of 65kw Class Switched Reluctance Motor for HEV Drive (하이브리드 자동차 구동용 65kW급 SR Motor의 설계)

  • Moon Jae-Won;Ahn Jin-Woo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.358-363
    • /
    • 2005
  • This paper presents the reasonable design parameters of a switched reluctance motor to drive a hybrid electric vehicle by using the equivalent magnetic circuit method. The designed motor can be redesigned by using finite element analysis as a variation of the parameter for the purpose of improving performance. This paper shows that a flat-topped current of a phase can be made from a change of the lamination stack length for high average torque and a lower torque ripple. The change of current falling time as a variation of turn-off angle was shown by finite element analysis. The core loss and copper loss were described. The torque of the redesigned motor is suitable for low and high speed ranges to drive a HEV. which is verified by the speed-torque curve.

Driving Characteristic of Reluctance Motor for EPS Application (EPS용 릴럭턴스 전동기의 구동특성)

  • Sohn, Ick-Jin;Ahn, Jin-Woo;Lee, Dong-Hee;Hur, Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.88-90
    • /
    • 2002
  • In this paper, SRM is designed and analyzed for EPS(Electrically Power Steering) application. EPS of vehicles plays a role that reduce driver's handle control power. For the proper design, FEM analysis is implemented according to the rotor structure. Designed motor is simulated with both FEM and magnetic circuit analysis, Effectiveness of the suggested SRM drive for EPS application is verified by the manufactured prototype motor drive tests.

  • PDF

A Study on the Design and Analysis of a Voice Coil Linear Force Motor for Hydraulic Valve (밸브구동용 보이스 코일 선형 포스모터 설계와 해석 연구)

  • Park, C.S.;Huh, J.Y.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • The voice coil linear force motor is a kind of a direct drive motion device that uses a permanent magnetic field and coil winding to produce force. In order to design a voice coil linear force motor, an exact calculations of the required force, the flux density in air gap and the flux pathway are needed. A conventional method can be used usually to calculate the flux density in air gap, but with this method it is needed to find a magnetic circuit revision constant. In this paper a voice coil linear force motor is designed by conventional design method and analyzed by 3D simulation program "Flux". For the prototype linear force motor, the results of the calculated by conventional design method and the analyzed by 3D simulation program are compared with the test result. Finally it is showed that the magnetic circuit revision constant which is found by comparing of the analyzed and the measured data can be used for the design of the voice coil type linear force motor to minimize the trial and error.

Single-phase SRM Drive with Torque Ripple Reduction and Power Factor Improvement

  • Lee, D.H.;Ahn, J.W.;Lee, Z.G.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.57-61
    • /
    • 2006
  • In the single-phase switched reluctance motor (SRM) drive, the required DC source is generally supplied by the circuit consisting of bridge rectifier and large filter capacitor connected with DC line terminal. Due to the large capacity of the capacitor, the charged time of capacitor is very short from the AC source. Lead to the bridge rectifiers draws pulsating current from the AC source side, which results in reduction of power factor and low system efficiency. Therefore a novel single-phase SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor with a novel switching topology. The proposed drive circuit consists of one switching part and diode, which can separate the output of AC/DC rectifier from the large capacitor and supply power to SRM alternately, in order to realize the torque ripple reduction and power factor improvement through the switching scheme. In addition, the validity of the proposed method is tested by some simulations and experiments.

  • PDF

A study on characteristics of three phase induction motor by #Kr{\ddot}{a}mer# system (#Kr{\ddot}{a}mer# 시스템에 의한 3.phi.유도전동기의 특성에 관한 연구)

  • 노창주;유춘식;정경열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.61-73
    • /
    • 1985
  • The induction motor is widely used in the power equipments of the ship and the various industrial drive applications because it is robust and relatively simple and cheap to manufacture, but it has a disadvantage that the speed of induction motor is not controlled in wide range such as d.c motor. In this paper, the characteristics relating to the Kramer system that the speed of three phase wound type induction motor is controlled by changing the exciting e.m.f. of the secondary circuit is described. In order to analyze the characteristics, a new simplified and approximated T-type equivalent circuit from the Kramer circuit with three phase graetz connection and d.c machine is proposed. The stator current, motor torque and mechanical output power are computed by the current, torque and power equations derived by its equivalent circuit. Through the experiments, the $I_f-N$, torque-slip and current-slip characteristic curves of the tested motor are obtained and the various needed constants are determined. The numerical values obtained from the above method are compared with experimental values under the same conditions. As a result of the above investigation, it is found that the induction motor speed by the Kramer system is controlled by 28 per cent under the rated speed by changing the field current of d.c motor and the values computed by the current and torque equations derived by the simplified and approximated T-type equivalent circuit generally come to approach the experimental values.

  • PDF

The Study on the design of Claw Pole Stepping Motor considering Axial flux (축 방향 자속을 고려한 Claw pole 스테핑 모터 설계에 관한 연구)

  • Jung, Dae-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.28-34
    • /
    • 2014
  • A claw pole stepping motor is widely used in various fields such as a compact optical disk drive, computer peripherals, digital cameras, office automation(OA), handheld mobile devices, because it has the suitable structure for compact motor. However 3D analysis is essential for design of Claw pole stepping motor because of axial flux path. Thus, in general, it takes a lot of time in the design of Claw pole motor. In this paper, magnetic equivalent circuit considering axial flux was proposed to reduce design time of Claw pole motor and we has designed by using the magnetic equivalent circuit. In addition, in oder to verify the study, design model was verified by 3D FEM simulation and experiment.