• Title/Summary/Keyword: Motor Start Up analysis

Search Result 16, Processing Time 0.029 seconds

Analysis of Soft Start-up Characteristics of the Induction Motor Considering the Firing Angle (점호각을 고려한 유도전동기의 소프트 기동 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1007-1012
    • /
    • 2016
  • Induction motors are used widely in driving load of a fluid, such as a pump or a fan in the industry. Induction motor has been generated the voltage drop by the occurrence of a high current during startup. In addition, high start-up current can act as a mechanical stress on the shaft of the motor. So there is need a way to reduce the starting current. Soft start method is one of the many ways to reduce the starting current. This method uses silicon-controlled rectifiers(SCRs) for varying value of the voltage applied to the motor. There is a case for fixing or changing the thyristor firing angle to adjust the magnitude of the voltage. Starting power factor of induction motor is very low compared to the normal operation. Soft starting with the firing angle fixed needs to be considered a low power factor at startup. In this study, we compared the direct start characteristics and soft start characteristics considering the low power factor at the time of start-up. It was possible to confirm that the starting current and the voltage drop is present differently according to the firing angle.

A Performance Investigation and Comparison of Line Start-up Permanent Magnet Synchronous Motor with Super Premium Efficiency

  • Feng, Xueqing;Bao, Yaxin;Liu, Lijun;Huang, Lizhong;Zhang, Yingming
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.30-37
    • /
    • 2012
  • This paper presents the performance investigation and design technology of a Line Start-up Permanent Magnet Synchronous Motor (LSPMSM) with super premium efficiency, including a design consideration and evaluation for motor start-up, key performance, and advanced finite element analysis FEA) for the design, improvement and verification, prototype build and test, design and test data comparison with a $Premium^{(R)}$ Efficient Induction Motor (PEIM). To assess the design technology, the LSPMSM prototype was built amended from a PEIM with the same frame, stator punching and rated output. Based on the prototype test, two novel design improvements and analyses have been done to eliminate noise and vibration. Additionally, the comparisons with the PEIM on the power factor, efficiency, frame size and active material consumption indicated that a significant performance improvement and active material cost reduction can be achieved by the LSPMSM.

A Study on Cause Analysis of a Fire that Broke Out on a No-start Motor Vehicle (시동불능 자동차에서 발생한 화재의 원인 분석 연구)

  • Lee, Eui-Pyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.92-99
    • /
    • 2012
  • It is often thought that because no-start motor vehicles cannot start an engine, a fire cannot occur for motor vehicle causes. However, although the engine cannot start up, some parts may be live with electricity if a battery is connected. If the parts have problems, a fire can occur. This study analyzed the causes of fires occurring when a motor vehicle was loaded onto a tow truck to service no-start. It is suggested that no-start motor vehicles should separate a battery terminal to prevent a fire. And this fire is related to automotive products liability.

Rotor Shape Design of Single Phase LSPM for Improvement of Start-up Characteristics and Efficiency (기동특성 및 효율 향상을 위한 Single-Phase LSPM의 회전자 형상 설계)

  • Kang, Min-Chul;Cho, Kwang-Jin;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.58-64
    • /
    • 2016
  • In this paper, the design of rotor shape was performed for improvement of start-up characteristics and efficiency in single-phase LSPM. In order to improve the start-up characteristics, shape of rotor aluminium cage bar was changed. Through arrangement of permanent magnets and installation of flux barriers, it was performed torque ripple reduction and efficiency improvement. Cogging torque and back-EMF is calculated by the no-load analysis, start-up time is calculated by the start-up state analysis, efficiency and torque ripple is calculated by steady state analysis. The characteristics of the motor were calculated through FEM.

Analysis and design of part winding to improve start-up characteristics (3상 유도 전동기의 기동 특성 향상을 위한 Part winding 해석 및 설계)

  • Kim, K.S.;Kim, K.C.;Lee, S.G.;Lee, J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.807-808
    • /
    • 2006
  • This paper covers start-up characteristic of three phase induction motor. When three phase induction motor is started, the inrush current occurs. There are several ways of reducing starting current of a three phase motor. In this paper will explain and propose the types of part windings in order to reduce the starting current.

  • PDF

Development of Thermal Management System Heater for Fuel Cell Vehicles (연료전지 자동차용 TMS 히터 개발)

  • Han, Sudong;Kim, Sungkyun;Kim, Chimyung;Park, Yongsun;Ahn, Byungki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.484-492
    • /
    • 2012
  • The TMS(Thermal Management System) heater in a fuel cell vehicle has been developed to prevent a decline of fuel cell durability and cold start durability. Main functions of the COD(Cathode Oxygen Depletion) heater are depletion of oxygen in a cathode as heat energy and consumption of electric power for rapid warming up of a fuel cell stack. This paper covers subjects including the design specification of a heater, heater controller for detection of overheat and reliability assessment including coolant pressure cycle test of a heater. To verify the design concept, burst pressure and deformation analysis of plastic housing were carried out. Also, temperature distribution analysis of heater surface and coolant inside of housing were carried out to verify the design concept. By designing the plastic housing instead of a steel housing, the 30% weight lightening and 50% cost reduction were attained. A module-based design of a TMS system including a heater or reducing the watt density of a heater is a problem to be solved in the near future work.

Comparison Analysis of Induction Motor using the Equivalent Circuit (등가회로도를 이용한 유도전동기의 특성 비교 분석)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.1
    • /
    • pp.7-11
    • /
    • 2014
  • Induction motor is the most widely used to obtain the driving force in the industrial site. Induction motor is generally applied to the constant speed operation. Induction motor generates a high current at startup. So analysis for both steady state operation and start-up transient is required. In most cases, an equivalent circuit is used for the characteristics analysis of the induction motor. In this study, the two programs are applied to analyze for the rated speed as well as entire speed range. We confirmed that calculation results of the two programs are similar to each other.

Analysis for the Reactive Power Changes of Induction Machines According to Rotation Speed (회전속도에 따른 유도기의 무효전력 변화 분석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.96-101
    • /
    • 2015
  • Induction machine requires a rotating magnetic field for energy conversion. The current to generate a rotating magnetic field is the magnetization current. This magnetization current corresponds to the reactive power. Reactive power is higher than active power at start-up of induction motor. As the rotation speed is increased, their magnitudes are reversed each other. The active power is higher than the reactive power at near the synchronous speed. This paper is dealing with the analysis result for the changes of the magnetizing current and reactive power when the induction machine is operating as a motor or generator near synchronous speed.

Analysis of Starting Torque and Speed Characteristics for Squirrel Cage Induction Motor According to Material Properties of Rotor Slot

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.328-333
    • /
    • 2015
  • Squirrel cage induction motors have mostly been used for their small capacity because the starting torque is smaller than the starting current during start-up. However, as more and more mid-to-large capacity motors are developed, the demands for improvements in performance characteristics have also increased. In this study, the starting characteristics of squirrel cage induction motors were analyzed based on the rotor materials and shapes using a finite element method to provide design data suitable for different use purposes and capacities. We further completed analysis by combining electromagnetic equations deduced from Maxwell’s equations and the circuit equations of stators and rotors. A moving coordinator was introduced to rotate the rotor during the analysis, and the torques calculated via the finite element method were combined with the motion equations to calculate the position and angular velocity of the rotors at the next time, thereby analyzing the transient characteristics. The analysis results of the transient characteristics were applied to a 3-phase 4-pole 5-hp induction motor to calculate the starting torque, speed, and rotation angle of the rotors. In the reference model, the materials and shapes of the rotor slot were changed to copper and silicon copper and a deep slot, shallow slot, and long-neck-shaped slot.

Start-up Analysis and Commissioning Test of LCI System for 183MW Large Synchronous Machine (183MW 대용량 동기기 구동 LCI 시스템 기동운전 분석 및 시험)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.626-631
    • /
    • 2013
  • Gas turbine systems are applied extensively in energy supplies to cover peak load requirements. The gas turboset must be accelerated by starting device up to 60%~80% of rated speed to ignite the gas turbine. Recently, the most favorable and economical starting device is the LCI(Load Commutated Inverter). The LCI runs up the gas turboset by feeding the generator as a synchronous motor. In this paper, we discuss in detail the driving principles and features of 183MW gas turbine system. During field application of LCI system, many tests have been conducted and the results were described in this paper. The test results will be considered as the important resources for development in future.