• Title/Summary/Keyword: Motor Design

Search Result 4,326, Processing Time 0.026 seconds

In-wheel Motor Design for an Electric Scooter

  • Lee, Ji-Young;Woo, Byung-Chul;Kim, Jong-Moo;Oh, Hong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2307-2316
    • /
    • 2017
  • The aim of this paper is to provide an optimal design of in-wheel motor for an electric scooter (E-scooter) considering economical production. The preliminary development in-wheel motor, which has a direct-driven outer rotor type attached to the E-scooter's rear wheel without any gear, is introduced first. The objective of the optimal design of this in-wheel motor is to improve the output characteristics of the motor and to have a stator form to facilitate automatic winding. Response surface methodology was used for the optimal design and 2-dimensional finite element method was used for electro-magnetic field analysis. Experimental results showed that the designed and fabricated in-wheel motor could satisfy the required specifications in terms of speed, power, efficiency, and cogging torque.

A Study on Design of Linear Induction Motor in Dynamic Tester for Catenary-current Collection (주행 집전계 시험기의 주행 대차용 선형 유도전동기 설계에 관한 연구)

  • Ham, Sang-Hwan;Cho, Su-Yeon;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.771-775
    • /
    • 2011
  • This paper presents design process of linear induction motor in dynamic tester for catenary-current collection. To minimize length of rail for dynamic tester for catenary-current collection, accelerating performance of the linear induction motor is very important. So the design process of linear induction motor considered in this paper is different with general design process of linear induction motor, because dynamic tester has three type driving region, as accelerating region, constant speed region, and braking region. Considering accelerating performance of motor, distance and time from starting point to constant speed region were concerned for load condition of motor. Designed linear induction motor was analyzed by 2-dimensional finite element method. Using mechanical dynamics simulation with analysis result of 2-dimensional finite element method and accelerating performance of designed motor was proved.

Data Interpolation and Design Optimisation of Brushless DC Motor Using Generalized Regression Neural Network

  • Umadevi, N.;Balaji, M.;Kamaraj, V.;Padmanaban, L. Ananda
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.188-194
    • /
    • 2015
  • This paper proposes a generalized regression neural network (GRNN) based algorithm for data interpolation and design optimization of brushless dc (BLDC) motor. The procedure makes use of magnet length, stator slot opening and air gap length as design variables. Cogging torque and average torque are treated as performance indices. The optimal design necessitates mitigating the cogging torque and maximizing the average torque by varying design variables. The data set for interpolation and ensuing design optimisation using GRNN is obtained by modeling a standard BLDC motor using finite element analysis (FEA) tool MagNet 7.1.1. The performance indices of the standard motor obtained using FEA are validated with an experimental model and an analytical method. The optimal design is authenticated using particle swarm optimization (PSO) algorithm and the performance indices of the optimal design obtained using GRNN is validated using FEA. The results indicate the suitability of GRNN as an interpolation and design optimization tool for a BLDC motor.

Low Cost Design Study of Brushless DC Motor for Electric Water Pump Application

  • Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.942-949
    • /
    • 2014
  • We studied about the rotor design change using a Ferrite ring magnet to reduce material cost in the condition of the same stator core design. However, this design direction has many weak points such as the decrease of BEMF, the low maximum output, the irreversible demagnetization characteristics of a permanent magnet and so on. In order to mitigate such disadvantages, an optimization design of the BLDC motor has been developed by changing each design parameter and by improving the electromagnetic structure. In the proposed water pump SPM BLDC motor using Ferrite magnet, the outer and inner diameter of stator is fixed to the value of the conventional IPM BLDC motor using Nd-Fe-B magnet. The design specification requirements should be satisfied with the same output power and efficiency characteristics in the same dimension. As a result of this study, the design comparison results considering driving performances and material cost are represented. Through the actual experiment with the prototype of the designed motor, the simulations results are verified.

Design Optimization of Linear Synchronous Motors for Overall Improvement of Thrust, Efficiency, Power Factor and Material Consumption

  • Vaez-Zadeh, Sadegh;Hosseini, Monir Sadat
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.105-111
    • /
    • 2011
  • By having accurate knowledge of the magnetic field distribution and the thrust calculation in linear synchronous motors, assessing the performance and optimization of the motor design are possible. In this paper, after carrying out a performance analysis of a single-sided wound secondary linear synchronous motor by varying the motor design parameters in a layer model and a d-q model, machine single- and multi-objective design optimizations are carried out to improve the thrust density of the motor based on the motor weight and the motor efficiency multiplied by its power factor by defining various objective functions including a flexible objective function. A genetic algorithm is employed to search for the optimal design. The results confirm that an overall improvement in the thrust mean, efficiency multiplied by the power factor, and thrust to the motor weight ratio are obtained. Several design conclusions are drawn from the motor analysis and the design optimization. Finally, a finite element analysis is employed to evaluate the effectiveness of the employed machine models and the proposed optimization method.

Development of In-wheel Motor for Power Add-on Drive Wheelchair (수전동 휠체어용 모터 개발)

  • Hong, Eung-Pyo;Park, Sei-Hoon;Oh, Hong-Seok;Ryu, Jae-Cheong;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.992-999
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity, are easier to transport, and may be an excellent alternative for the typical manual or electric wheelchairs. The development of in-wheel motor for a PADW is the principal issues. In this paper, design, implementation, and testing of the permanent magnet synchronous motor (PMSM) for a PADW are presented. To design output power and torque of the motor, the equation of motion has been investigated. The design parameters were calculated and the dimension and shape of the motor which was limited by the In-wheel mechanism of the PADW were done by applying FEM and optimal design technique. The prototype of the motor mentioned above was fabricated with precise machining and assembling. Then the motor tested on dynamometer and the measured results of the motor were verified by comparing the design results. The fabricated motor was 80 mm in length with a diameter of 110 mm and small enough to be attached the driving unit of the PADW.

The Study on the design of Claw Pole Stepping Motor considering Axial flux (축 방향 자속을 고려한 Claw pole 스테핑 모터 설계에 관한 연구)

  • Jung, Dae-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.28-34
    • /
    • 2014
  • A claw pole stepping motor is widely used in various fields such as a compact optical disk drive, computer peripherals, digital cameras, office automation(OA), handheld mobile devices, because it has the suitable structure for compact motor. However 3D analysis is essential for design of Claw pole stepping motor because of axial flux path. Thus, in general, it takes a lot of time in the design of Claw pole motor. In this paper, magnetic equivalent circuit considering axial flux was proposed to reduce design time of Claw pole motor and we has designed by using the magnetic equivalent circuit. In addition, in oder to verify the study, design model was verified by 3D FEM simulation and experiment.

Study on the Design of Line-Start Synchronous Reluctance Motor Replacing Induction Motor (유도전동기 대체 라인기동식 동기형 릴럭턴스 전동기 회전자의 설계 연구)

  • Liu, Huai-Cong;Lee, Sang-Don;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1813-1819
    • /
    • 2016
  • In this paper, LS-SynRM (Line Start-Synchronous Reluctance Motor) has been attracting attention in replace of induction motor which hardly provides high efficiency. Compared to induction motor, LS-SynRM has better efficiency per unit area. This study demonstrated the electromagnetic design methods of LS-SynRM while maintaining the frame of existing IE3 induction motor for blower. We documented the design procedures for generating high saliency which is the most essential and mechanical stress analysis is also treated. In conclusion, we proved the validity of our design by manufacturing and testing our LS-SynRM models.

A Design of Spindle Motor for Wide Constant Power Range (정출력 영역 확대를 위한 SPINDLE MOTOR 설계)

  • Kim, Jung-Chol;Park, Jin-Su;Kim, Tae-Heoung
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.28-30
    • /
    • 1996
  • In the paper the authors deal with inverter fed induction motors design criteria for having a wide constant power range. In particular, the flux weakening operation is the main feature considered. The design target concerns the possibility of having a wide flux weakening region avoiding or limiting, at the same time, to oversize the motor and the inverter.

  • PDF

Development of Vibration Motor Using Coreless Permanent Magnet DC Motor (무철심 영구자석 직류 모터를 이용한 진동자 개발)

  • Hwang, Sang-Moon;Chung, Shi-Uk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.15-23
    • /
    • 1999
  • With a remarkable expansion of communication industry, a pager or a cellular phone becomes a necessary communication device in modern society. However, a paging signal by a buzzer is often acted as an unpleasant noise in some places, thus necessitating a paging signal by a vibration motor. In this paper, a simpler type of a vibration motor, a coreless permanent magnet(PM) DC motor, is considered to substitute for the conventional vibration motors. Using an analytical method, electromagnetic field and operating torque were calculated for the given inner and outer PM type motors, and the results were confirmed by FEM analysis. As design parameters, number of PM poles, PM radial thickness, coil arc angle and number of winding stacks were chosen for sensitivity analysis. It shows that coil arc angle is the most important design parameter to increase the motor performance, without giving an adverse effect on motor weight, size and manufacturing cost. Based on the analysis of the outer PM type motor, an outer square PM type motor is proposed as the final design. Compared to the outer PM type, outer square type provides more flexibility to attach to the small size cellular phones. With the optimum design of square outer PM DC motor, it can successfully substitute the conventional types with less expensive manufacturing cost. better performance and smaller necessary space.

  • PDF