• Title/Summary/Keyword: Motor Bearing

Search Result 470, Processing Time 0.027 seconds

Bearing Multi-Faults Detection of an Induction Motor using Acoustic Emission Signals and Texture Analysis (음향 방출 신호와 질감 분석을 이용한 유도전동기의 베어링 복합 결함 검출)

  • Jang, Won-Chul;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.55-62
    • /
    • 2014
  • This paper proposes a fault detection method utilizing converted images of acoustic emission signals and texture analysis for identifying bearing's multi-faults which frequently occur in an induction motor. The proposed method analyzes three texture features from the converted images of multi-faults: multi-faults image's entropy, homogeneity, and energy. These extracted features are then used as inputs of a fuzzy-ARTMAP to identify each multi-fault including outer-inner, inner-roller, and outer-roller. The experimental results using ten times trials indicate that the proposed method achieves 100% accuracy in the fault classification.

Application of Multiple Parks Vector Approach for Detection of Multiple Faults in Induction Motors

  • Vilhekar, Tushar G.;Ballal, Makarand S.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.972-982
    • /
    • 2017
  • The Park's vector of stator current is a popular technique for the detection of induction motor faults. While the detection of the faulty condition using the Park's vector technique is easy, the classification of different types of faults is intricate. This problem is overcome by the Multiple Park's Vector (MPV) approach proposed in this paper. In this technique, the characteristic fault frequency component (CFFC) of stator winding faults, rotor winding faults, unbalanced voltage and bearing faults are extracted from three phase stator currents. Due to constructional asymmetry, under the healthy condition these characteristic fault frequency components are unbalanced. In order to balanced them, a correction factor is added to the characteristic fault frequency components of three phase stator currents. Therefore, the Park's vector pattern under the healthy condition is circular in shape. This pattern is considered as a reference pattern under the healthy condition. According to the fault condition, the amplitude and phase of characteristic faults frequency components changes. Thus, the pattern of the Park's vector changes. By monitoring the variation in multiple Park's vector patterns, the type of fault and its severity level is identified. In the proposed technique, the diagnosis of faults is immune to the effects of unbalanced voltage and multiple faults. This technique is verified on a 7.5 hp three phase wound rotor induction motor (WRIM). The experimental analysis is verified by simulation results.

Rotor Coastdown and Acceleration Performances of High-speed Motors Supported on Ball Bearings and Gas Foil Bearings (볼 베어링 및 가스 포일 베어링으로 지지되는 고속 전동기의 회전체 관성정지 및 가속 성능 연구)

  • Mun, HyeongWook;Seo, JungHwa;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.123-131
    • /
    • 2019
  • This study characterizes the coastdown performances of two small electric motors supported on high-speed ball bearings (BBs) and gas foil bearings (GFBs), and it predicts their acceleration performances. The two motors have identical permanent magnetic rotors and mating stators. However, the shaft of the GFBs has a larger mass and polar/transverse moments of inertia than that of the BBs. Motor coastdown tests demonstrate that the rotor speed decreases linearly with the BBs and nonlinearly with the GFBs. A simple model for the BBs predicts a constant drag torque and linear decay of speed with time. The test data validate the model predictions. For the GFBs, the hydrodynamic lubrication model predictions reveal that the drag torque increases linearly with speed, and the speed decreases exponentially with time. The predictions agree very well with the test data in the speed range of 100-30 krpm. The boundary lubrication model predicts a constant drag torque and linear decay of speed with time. The predictions agree well with the test data below 15 krpm. Mixed lubrication occurs in the speed range of 30-15 krpm. Rotor acceleration performances are predicted based on the characteristics of deceleration performances. The GFBs require more time to reach 100,000 krpm than the BBs because of their larger shaft polar moment of inertia. However, predictions for the assumed identical polar moment of inertia reveal that the GFBs have a nearly identical acceleration performance to that of the BBs with a motor torque greater than $0.03N{\cdot}m$.

Classification of Vibration Signals for Different Types of Failures in Electric Propulsion Motors for Ships Using Data from Small-Scale Apparatus (소형 모사 장비의 데이터를 이용한 선박용 전기 추진 모터의 고장 유형별 진동 신호의 분류)

  • Seung-Yeol Yoo;Jun-Gyo Jang;Min-Sung Jeon;Jae-Chul Lee;Dong-Hoon Kang;Soon-Sup Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.441-449
    • /
    • 2023
  • With the enforcement of environmental regulations by the International Maritime Organization, the market for eco-friendly ships is expanding, and ships using electric propulsion devices are emerging as a promising solution. Many studies have been conducted to predict the failure of ships, but most of them are mainly research on the main diesel engine of ships. As the ship's propulsion method changes, new data is needed to predict the failure of electric propulsion ships. In this paper aims to analyze the failure characteristics of the electric propulsion system in consideration of the difference in the type of failure between the internal diesel engine and the electric propulsion system. The ship's propulsion unit assumed a DC motor and a signal pattern for normal conditions and general failure modes, but the failure record of the electric propulsion device operated on the actual ship was not available, so it generated a failure signal for small electric motor equipment to identify the failure signal. Assuming unbalance, misalignment, and bearing failure, which are the primary failure modes of the ship's electric motor, a failure signal was generated using a "rotator vibration data generator," and the frequency band, size, and phase difference of the measured vibration signal were analyzed to analyze the characteristics of each failure condition. Finally, the characteristics of each failure condition were identified so that the signals according to the failure type could be classified.

Prediction of Power and Efficiency Requirement of Motor/generator for 500W Class Micro Gas Turbine Generator Considering Losses (손실을 고려한 500W급 마이크로 가스터빈 발전기용 전동발전기의 요구동력 및 요구효율 선정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.24-30
    • /
    • 2011
  • 500W class MTG(Micro turbine generator) operating at 400,000 rpm is under development. From the cycle analysis, it is decided that the self-sustaining speed of MTG is 200,000rpm and the generating speed is 400,000 rpm. Therefore, motor should be designed so that it is able to rotate the rotor up to 200,000rpm and generator should designed so that it is able to generate 500W output at 400,000rpm. First step to design motor/generator is to determine the power and efficiency requirement. Not only the power into the compressor and from the turbine at the operating speed but also the mechanical and electrical losses should be considered in determining the power and efficiency requirement. This study presents the procedure and the results of determining the power and efficiency requirement considering the mechanical and electrical losses depending on the rotating speed which is measured from the experiment.

Implementation of Data Monitoring and Acquisition System for Real-time Rotating Machinery based on oneM2M (oneM2M 표준 기반 실시간 회전기기 센싱 데이터 수집 및 모니터링 시스템 구현)

  • Lee, Young-Dong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2019
  • In this paper, oneM2M based data monitoring and acquisition system is designed and implemented to measure and transmit the voltage, current, temperature, acceleration and vibration of the motor. The proposed system can detect electrical faults (overcurrent, reverse phase, phase loss, ground fault) and mechanical faults (MC counter, motor operation time, bearing and winding temperature, motor speed, insulation resistance). The system consists of sensor data collection, web server, php, database, wired/wireless communication system. The insulation resistance and the motor speed were measured, and the experimental results were similar for both the test resistance value and the reference input value.

A Study of Influence of Asymmetrical Weight-Bearing on the LOS of Independent Ambulatory Hemiparetic Patients on Standing (편마비 환자의 비대칭적 체중지지가 기립균형 안정성 한계에 미치는 영향)

  • Kwon, Hyuk-Cheol;Jeong, Dong-Hoon
    • Physical Therapy Korea
    • /
    • v.7 no.2
    • /
    • pp.1-19
    • /
    • 2000
  • Decreased equilibrium in standing and walking is a common problem associated with hemiparesis secondary to cerebral vascular accident. In patients with hemiplegia, postural sway is increased and often displaced laterally over the non-affected leg, reflecting asymmetry in lower extremity weight bearing during standing balance. Human balance is a complex motor control task, requiring integration of sensory information, neural processing, and biomechanical factors. Limits of stability (LOS) is a one of the biomechanical factors. The purposes of this study were to establish the influence of asymmetrical weight-bearing on the LOS of independent ambulatory hemiparetic patients. The subjects of this study were 29 hemiparetic patients (18 males, 11 females) being treated as admitted or out patients at Young-Nam University Hospital and Taegu Catholic University Hospital, all of whom agreed to participate in the study. Participants were asked to lean and displace their center of gravity (COG) as far as possible in directions to the sides and front of the body. The LOS and weight-bearing ratio were measured with a Balance Performance Monitor (BPM) Dataprint Software Version 5.3. In order to assure the statistical significance of the results, the independent t-test and a Pearson's correlation were applied at the .05 and .01 level of significance. The results of this study were as follows: 1) There were statistically significant differences in anteroposterior LOS according to the cause of brain demage (p<.01). 2) There were statistically significant differences in mediolateral LOS according to the hemiparetic side (p<.05). 3) There were statistically significant differences in anteroposterior and mediolateral LOS according to the brain operation (p<.01). 4) The mediolateral LOS significantly correlated with weight-bearing ratio (p<.01).

  • PDF

A Development of Eddy Current Sensor System for An Axial-flow type Blood Pump with The Magnetic Bearing (축류형 인공심장의 자기베어링 제어를 위한 와전류 센서 시스템 개발)

  • Ahn, C.B.;Moon, K.C.;Jeong, G.S.;Nam, K.W.;Lee, J.J.;Sun, K.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.310-315
    • /
    • 2007
  • The axial-flow type blood pump(XVAD) which has been developed in our group consists of mechanical parts (an impeller, a diffuser and a flow straightener) and electrical parts (a motor and a magnetic bearing). The magnetic bearing system fully levitates the impeller to remove mechanical coupling with other parts of the pump with constant gap, which needs non-contact type gap sensing. Conventional gap sensors are too large to be adopted to the implantable axial -flow type blood pump. Thus, in this paper, the compact eddy current type gap sensor system proper for the implantable axial-flow type blood pump was developed and its performance was evaluated in vitro. The developed eddy current type gap sensor system is a transformer type and has a differential probe. Sensor coil(probe) has small dimensions(6 mm diameter, 2 mm thickness) and its optimal inductance was determined as 0.068 mH for the measurement range of $0\sim3mm$. It could be manufactured with 130 turns of the 0.04 mm diameter copper coil. The characteristics of the developed eddy current type gap sensor system was evaluated by in vitro experiment. At experiment, it showed satis(actory performance to apply to the magnetic bearing system of the XVAD. It could measure the gap up to 3mm, but the linearity was decreased at the range of $1.8\sim3.0mm$. Moreover, it showed no difference in different media such as the water and the blood at the temperature range of $35\sim40^{\circ}C$.

Building Bearing Fault Detection Dataset For Smart Manufacturing (스마트 제조를 위한 베어링 결함 예지 정비 데이터셋 구축)

  • Kim, Yun-Su;Bae, Seo-Han;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.488-493
    • /
    • 2022
  • In manufacturing sites, bearing fault in eletrically driven motors cause the entire system to shut down. Stopping the operation of this environment causes huge losses in time and money. The reason of this bearing defects can be various factors such as wear due to continuous contact of rotating elements, excessive load addition, and operating environment. In this paper, a motor driving environment is created which is similar to the domestic manufacturing sites. In addition, based on the established environment, we propose a dataset for bearing fault detection by collecting changes in vibration characteristics that vary depending on normal and defective conditions. The sensor used to collect the vibration characteristics is Microphone G.R.A.S. 40PH-10. We used various machine learning models to build a prototype bearing fault detection system trained on the proposed dataset. As the result, based on the deep neural network model, it shows high accuracy performance of 92.3% in the time domain and 98.3% in the frequency domain.

THERMAL FRICTION TORQUE CHARACTERISTICS OF STAINLESS BALL BEARINGS

  • Lee, Jae-Seon;Kim, Ji-Ho;Kim, Jong-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.289-290
    • /
    • 2002
  • Stainless steel ball bearings are used in the control element drive mechanism and driving mechanisms such as step motor and gear boxes for the integral nuclear reactor, SMART. The bearings operate in pressurized pure water (primary coolant) at high temperature and should be lubricated with only this water because it is impossible to supply greases or any additional lubricant since the whole nuclear rector system should be perfectly sealed and the coolant cannot contain ingredients for bearing lubrication. Temperature of water changes from room temperature to about 120 degree Celsius and pressure rises up to 15MPa in the nuclear reactor. It can be anticipated that the frictional characteristics of the ball bearings changes according to the operating conditions, however little data are available in the literature. It is found that friction coefficient of 440C stainless steel itself does not change sharply according to temperature variation from the former research, and the friction coefficient is about 0.45 at low speed range. In this research frictional characteristics of the assembled ball bearings are investigated. A special tribometer is used to simulate the axial loading and the bearing operating conditions, temperature and pressure in the driving mechanism in the nuclear reactor. Highly purified water is used as lubricant ‘ and the water is heated up to 120 degree Celsius and pressurized to 15MPa. Friction force is monitored by the torque transducer.

  • PDF