• Title/Summary/Keyword: Motor Bearing

Search Result 468, Processing Time 0.024 seconds

Oil Film Thickness Measurement of Engine Bearing and Cam/tappet Contact in an Automotive Engine

  • Choi, Jae-Kwon;Min, Byung-Soon;Han, Dong-Chul
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.71-77
    • /
    • 1995
  • The capacitance technique was used to measure the minimum oil film thickness in engine bearing and the central oil film thickness between cam and tappet. This method is based on the measurement of total capacitance of oil film. For the measurement of the oil film thickness between cam and tappet, two surfaces were assumed to be flat and parallel within the Hertzian region and all the measured capacitance originated from this region. Shear rates from the measured minimum oil film thickness are over 10$^{6}$ sec$^{-1}$ in the greater part in both two cases. The minimum oil film thickness in engine bearing is larger than the surface roughness. Between cam and tappet it is mostly smaller than the surface roughness. In spite of the awkward restriction of the reliability of measured oil film thickness, it was known that the capacitance technique makes it possible to measure the oil film thickness in elastohydrodynamic and mixed lubrication regimes as well as in hydrodynamic regime. Therefore, it is also possible to classify the lubrication regimes based on the oil film thickness.

A Study on the Reliability of an Air Foil Journal Bearing for High Speed Turbomachinery (고속 터보기계용 공기 포일 저널 베어링의 신뢰성에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.199-206
    • /
    • 2002
  • This paper describes a reliability characteristics of an air foil journal bearing for high speed turbomachinery at room temperature. To verify the reliability of air foil journal bearing, lift-off characteristics, load carrying capacity, and 10,000 cycle start-stop test were performed with motor driven test rig. Lift-off test shows the relationship between the rotating speed of the shaft and the frictional torque with bearing surface. About load carrying capacity, the tested air foil journal bearing produced a load capacity of 500N at an operating speed of 15,000rpm, which is compared with results of numerical analysis and empirical coefficients. Finally, The trends in change of start torque, stop torque, and bearing temperature were shown during 10,000 cycle start-stop test of an air foil journal bearing. from the results of this work, an air foil bearing will be done well, as a supported bearing for high speed turbo-compressor.

  • PDF

A Study on the Reliability of an Air Foil Journal Bearing for High Speed Turbomachinery (고속 터보기계용 공기 포일 저널 베어링의 신뢰성에 관한 연구)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.7-14
    • /
    • 2003
  • This paper describes reliability characteristics of an air foil journal bearing for high-speed turbomachinery at a room temperature. To verify the reliability of air foil journal bearing, lift-off characteristics, load carrying capacity, and 10,000 cycle start-stop test were performed with a motor-driven test rig. A lift-off test shows the relationship between the rotating speed of the shaft and the frictional torque with bearing surface. About a load-carrying capacity, the tested air foil journal bearing produced a load capacity of 500N at an operating speed of 15,000rpm, which is compared with results of numerical analysis and empirical coefficients. Finally, the trends in change of start torque, stop torque, and bearing temperature were shown during a 10,000-cycle start-stop test of an air foil journal bearing. We found that an air foil bearing performs well, as a supported bearing for the high-speed turbocompressor.

A Study on the Development of Hydrostatic High Speed Spindle for Grinding Machine (고속 연삭기용 유정압 스핀들 개발에 관한 연구)

  • Kim, Jeong-Suk;Cho, Yong-Kwon;Park, Jin-Hyo;Moon, Hong-Man
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.96-100
    • /
    • 2011
  • The hydrostatic bearings have a relatively small run-out comparing to its shape error by fluid film effect in hydrostatic state as like pneumatic bearing and have a high stiffness, load capacity and damping characteristics. As there is no maintenance and semipermanent in these bearing type, it has been usually adopted as main spindle bearing for grinding machine. In this thesis, to develop hydrostatic bearing for high speed spindle, the cooler setting temperature, bearing clearance and nozzle pressure of belt-driven hydrostatic bearing are investigated. The bearing temperature is decreased, as the cooler setting temperature is lower, nozzle pressure is higher and bearing clearance is wider. The front temperature of bearing is nearly $8^{\circ}C$ higher than the rear one up to 13,000 rpm of spindle revolution. The thermal deflection of X-axis is ${\pm}16\;{\mu}m$ in range of 12,000 rpm-13,000 rpm. Therefore, it is conformed that the built-in motor hydrostatic bearing can be used to high speed spindle.

EHD Analysis on Lubrication Mechanics of Connecting Rod Bearing

  • Kim, Chung-Kyun;Kim, Sung-Won;Kim, Han-Goo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.405-406
    • /
    • 2002
  • The main subject of this paper is analyzing the patterns of maximum oil film pressure and the minimum oil film thickness under various pre-conditions of geometric shape as functions of bearing groove and proceeding oil hole in the connecting rod bearing. As the major analytical tool, elastohydrodynamic lubrication analysis has been applied and two-intertwined results of maximum oil film pressure and minimum oil film thickness have been compared and analyzed using EXCITE program. From computed results, the optimal lubrication conditions as geometric shape of bearing groove and the proceeding oil hole have been investigated. This may be useful for the bearing designer as a firm reference.

  • PDF

Support Vector Machine Based Bearing Fault Diagnosis for Induction Motors Using Vibration Signals

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Choi, Kyeong-Ho;Lee, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1558-1565
    • /
    • 2015
  • In this paper, we propose a new method for detecting bearing faults using vibration signals. The proposed method is based on support vector machines (SVMs), which treat the harmonics of fault-related frequencies from vibration signals as fault indices. Using SVMs, the cross-validations are used for a training process, and a two-stage classification process is used for detecting bearing faults and their status. The proposed approach is applied to outer-race bearing fault detection in three-phase squirrel-cage induction motors. The experimental results show that the proposed method can effectively identify the bearing faults and their status, hence improving the accuracy of fault diagnosis.

A Study on Thermal Characteristics of Air Bearing System for High-Speed Spindle (고속 스핀들용 공기 베어링의 열 특성에 관한 연구)

  • 이득우;이종렬;김보언;안지훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1021-1026
    • /
    • 2000
  • The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite element method analysis obtain temperature rise and temperature distribution of housing. For the analysis three-dimensional model is built and temperature rise and distribution in thermal steady state are computed for each rotational frequency. Generally. It is said that the heat generation of air bearing is negligible. But it is certain that the heat generation of air bearing can not be negligible especially in high-speed conditions Frequency response test for air spindle system is executed. In case that the heat generation of air spindle system is high, natural frequency of the system becomes lower when it reaches thermal steady-state and it means that the stiffness of air hearing becomes smaller due to the change of bearing clearance. It is shown that the temperature rise of all spindle system causes thermal expansion md induces the variation of hearing clearance. In consequence the st illness of air bearing becomes smaller.

  • PDF

A Study on the Determination of Shaft Size Using the Extreme Vertices Design (꼭지점계획법을 이용한 주축 치수 결정에 관한 연구)

  • Hwang, Young-Kug;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.214-220
    • /
    • 2009
  • The spindle is the main component in machine tools. The static and dynamic stiffness of the spindle directly affect the machining productivity and surface integrity of the workpiece. The static and dynamic stiffness of the spindle depend on the shaft size, bearing arrangement, bearing span length, and so on. Therefore, the selection of shaft size and bearing span length are important to improve the spindle stiffness. This paper presents the determination of shaft size and bearing span length in spindle design step. In order to select the optimal bearing and built-in motor locations with constraint conditions, the extreme vertices design was applied. The results show that extreme vertices design is usable for spindle design with design constraints.

Lubrication Analysis of the Grooved Journal Bearing Lubricated with Pressurized High Temperature Water (고온/고압 환경 하에서 물로 윤활되는 그루브 저어널 베어링의 윤활 해석)

  • 이재선;박진석;김종인
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.105-108
    • /
    • 2002
  • Specially designed grooved journal bearings are installed in the main coolant pump for SMART (System-integrated Modular Advanced ReacTor) to support radial load on the rotating shaft. The canned motor type main coolant pumps are arranged vertically on the reactor vessel and filled with circulating primary coolant which is pure water. The main coolant pump bearings are lubricated with this coolant without any other external lubricant supply. Because lubricating condition is too severe for this bearing to generate proper hydrodynamic film, investigation of lubrication characteristics of the journal bearing is important to satisfy life constraint of whole pump system, and the results will be applied to the analysis of dynamic characteristics of the shaft system. The bearing is made of silicon graphite which has self$.$lubricating effect. A lubrication analysis method is proposed for this vertically grooved journal bearing in the main coolant pump of SMART, and lubricational characteristics of the bearings are examined in this paper.

A Study on Lubrication Characteristic of the Hydrostatic Bearing In Swash Plate Type Piston Motor (사판식 피스톤 모터의 정압베어링 윤활특성에 관한 연구)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.5-9
    • /
    • 2011
  • The hydraulic piston using a hydrostatic bearing has been used widely due to its satisfying performance at very high pressurized circumstance and relative higher power density in comparison to conventional one. For high pressurization, enhanced efficiency and long durability of the hydraulic piston, the design of hydrostatic bearing is at issue, which is installed between piston shoe and swash plate. The performance of the hydrostatic bearing is influenced significantly by the assembly of the piston shoe consisting of circular land and recess. In this study, to estimate the performance of the hydrostatic bearing, the characteristics for lubrication of the assembly of the piston shoe were investigated by measuring a leakage rate of hydraulic fluid under an experimental condition, where a rotating velocity of the piston, hydraulic pressure and temperature of the hydraulic fluid were changed systematically. In addition, a film thickness of the hydraulic fluid on the piston shoe was measured and compared to theoretical one.