• Title/Summary/Keyword: Motor Bearing

Search Result 468, Processing Time 0.024 seconds

Development of An Active Magnetic Bearing-based Motor-Generator System (자기베어링 지지 모터-발전기 시스템 개발)

  • Kim, Jong-Moon;Kim, Choon-Kyung;Kim, Kook-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.127-129
    • /
    • 1997
  • In this paper, an active magnetic bearing-based motor-generator(M-G) system is designed and controlled by using DSP devices. Several experiments including start-up test, impulse test, whirl test, and generator load test are conducted using digital PID algorithm and AC power of about 58Hz, 100V, 0.8A can be generated from the M-G set.

  • PDF

Chemical Resistance and Field Trial of 3D-Printed Plastic Ball Bearing Used in Electric Motors for Chemical Processes (화학공정용 전동기에 사용된 3D 프린팅 플라스틱 볼베어링의 내화학성 평가 및 현장적용 연구)

  • Youngjun Kwon;Myounggyu Noh
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Fluid pumps in chemical processes are typically driven by electric motors. Even if the motor is separated from the pump with seals, wear resulting from friction and misalignment can lead to leakage of chemical fluid, causing corrosion in the bearing supporting the motor, and, eventually, failure of the motor. It is thus a standard procedure to replace bearings at regular intervals. In this article, we propose 3D-printed plastic ball bearings for use as an alternative to commercial stainless-steel ball bearings. The plastic bearings are easy to manufacture, require less time to replace, and are chemically resistant. To validate the applicability of the plastic bearings, we first conducted chemical resistance tests. Bearings were immersed in 30 caustic acid and 30 nitric acid for 30 min and 24 h, respectively. The test results showed no corrosive damage to the bearings. A test rig was set up to compare the performance of the plastic bearings with that of the commercially equivalent deep-groove ball bearings. Loading test results showed that the plastic bearings performed as well as the commercial bearing in terms of vibration level and load-handling capability. Finally, a plastic bearing was subjected to a clean-in-place process for three months. It actually outperformed the commercial bearing in terms of chemical resistance. Thus, 3D-printed plastic bearings are a viable alternative to stainless-steel ball bearings.

Research for Stepping Motor Using Piezoelectric Torsional Actuator (압전회전작동기를 이용한 스텝모터에 관한 연구)

  • Kim Jun Hyuk;Kim Jaehwan;Chung Dal Do
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.499-505
    • /
    • 2005
  • In this paper, a new type of pi+ezoelectric stepping motor is designed, manufactured and tested. This motor is composed of piezoelectric torsional actuator and a pair of one-way clutch bearings. The torsional actuator consists of 16-polygonal tube of piezoceramic that can produce an angular displacement associated with shear mode. One-way clutch bearing converts oscillation of torsional actuator into a continuous stepping rotation. The proposed stepping motor does not require any conversion mechanism for stepping motion like any other motors. In the design process, the shear resonance mode of piezoelectric actuator is analyzed by using a commercial finite element analysis program, and the performance of the fabricated torsional actuator is measured. $0.124^{\circ}$ of maximum angular displacement is measured in square wave excitation on the actuator only. The stepping motor is manufactured by assembling a pair of one-way clutch bearings and the torsional actuator. The maximum rotation speed of 72rpm and the blocking torque of 3.136 mNm are measured at 3540 Hz and 100V/mm. Once the proposed piezoelectric stepping motor is miniaturized, it can be used for many compact and precise moving applications.

Optimization of Magnetic Flux-path Design for Reduction of Shaft Voltage in IPM-Type BLDC Motor

  • Kim, Kyung-Tae;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2187-2193
    • /
    • 2014
  • In this paper, we propose a method for suppressing shaft voltage by modifying the rotor shape and the permanent magnets in interior permanent magnet type high voltage motors. The shaft voltage, which adversely affects the bearing by occurring bearing current, is induced by parasitic components and the leakage flux in motor-driven systems as well as inherent linkage flux between main magnetic flux and shaft according to rotor configuration. Thus, shaft voltage should be analyzed and considered under inverter-driven and non-inverter-driven conditions because inherent linkage flux can analyze under non-inverter-driven condition. In this study, we designed re-arrangement magnet and re-structuring rotor to minimize the shaft voltage. In addition, we optimized the proposed models. The shaft voltage suppression effect of the designed model was validated experimentally and by comparative finite element analysis.

Development of Biaxial Tension & Shear Tester using Stepper Motor with Harmonic Driver (감속 스텝모터를 이용한 2축 인장·전단 시험기의 개발)

  • Choi, Byung-Sun;Bae, Won-Ho;Chai, Young-Suck
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.379-386
    • /
    • 2001
  • The lower toughness or brittle materials for mechanical test lead to the additional requirement that applied displacements be controlled with high resolution. Biaxial tension and shear tester using stepper motor with harmonic driver is shown. The device had to be high resolution so that the crack initiation process of slow extension and steady growth could be examined, Grip plates were connected to a linear bearing and actuator. The actuators consisted of stepper motors with harmonic driver connected to pre-loaded ball screw and nut assemblies. The encoders and motor controllers were connected to a personal computer so that arbitrary displacements histories could he prescribed in normal and tangential directions. The linear bearings were used to react loads perpendicular to their axes while allowing low friction, parallel movement of the attached grips. Load cells measured the reactions normal and tangential. the loads measured the reactions were recorded by the computer.

  • PDF

Rotating Shaft Vibration Analysis of 200 kW, 15,000 rpm 3 Phase Induction Motor (200 kW급 15,000 rpm 3상 유도전동기의 회전축 진동해석)

  • Hong, D.K.;Koo, D.H.;Woo, B.C.;Hong, S.S.;Kwon, Y.S.;Kang, H.C.;Ahn, C.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.262-265
    • /
    • 2006
  • The purpose of this study is to design 200 kW, 15,000 rpm 3 phase induction motor. This research deals with natural frequency and mode shape of rotating shaft of 3 phase induction motor with bearing stiffness by finite element analysis. We present natural frequency characteristic variation of rotating shaft according to change bearing stiffness. Also we are verified stability of rotating shaft from backward and forward critical speed by campbell diagram.

  • PDF

Actuating Characteristics of Electrostatic Micro-motors

  • Kim, Young-Cheol;Kim, Byung-Ok
    • 연구논문집
    • /
    • s.33
    • /
    • pp.53-65
    • /
    • 2003
  • Electrostatic micro-motors can be divided into three classes: (i) salient type side drive motor, (ii) radial gap type wobble motor, (iii) axial gap type wobble motor. The working mechanism, torque evaluation, fabrication, and operational characteristics of each micro motors are compared. It is proved that axial gap type wobble motor has the bigger generating torque than that of the other type. The gear ratio of wobble motors increases the driving torque at the cost of a decreasing angular speed and decreases the friction because of the rolling motion instead of sliding at the bearing. Techniques for characterizing micro-motors performance are presented.

  • PDF

Analysis of Performance Characteristics of Swash-Plate-Type Hydraulic Piston Motor (사판식 유압 피스톤모터의 성능특성 분석)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1441-1446
    • /
    • 2012
  • An axial-piston-type hydraulic motor involves friction and leakage losses at the sliding parts, contact loss at the mechanism assembly parts, volumetric loss caused by the pressure drop, housing oil churning loss and compressibility from the hydraulic oil pipe resistance, etc. the friction and volumetric loss at the hydrostatic bearing between the piston shoe and the swash plate rotating at high speed and having an oil film gap of 8-15 ${\mu}m$ strongly affects the total efficiency of the hydraulic motor. In this study, a variable swash-plate-type hydraulic piston motor operating under a maximum pressure of 35 MPa, maximum speed of 2,500 rpm, and displacement of 320 cc/rev is tested to verify the optimal ratio of the hydrostatic bearing which is closely related to the hydraulic motor performance.

Thermal Characteristics of the High Frequency Motor Spindle according to the Bearing Preloads and Cooling Conditions (예압과 냉각조건에 따른 고주파 모터 내장형 주축계의 열특성)

  • Choi, Dae-Bong;Kim, Soo-Tae;Jung, Sung-Hun;Kim, Jin-Han;Kim, Yong-Kee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.31-36
    • /
    • 2005
  • Use of the high frequency motor spindles are increasing for the high speed machine tools recently. The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball hearings. Thermal characteristics according to the bearing preload and spindle cooling are studied for the spindle with the oil mist lubrication and high frequency motor. Temperature distribution and thermal displacement according to the spindle speed, preload and flow rate are measured. Temperature distribution and thermal displacement of the high speed spindle system can be estimated reasonably by using the three dimensional model through the finite element method. The results of analysis are compared with the measured data. This study supports thermal optimization and find out more effective cooling condition. This paper show that the suitable preload and spindle cooling are very effective to minimize the thermal effect by the motor and ball bearings.

An Estimation of Bearing Capacity and Driveability of Steel Sheet Pile Installed by Vibratory Hammer (진동해머에 의해 설치되는 강널말뚝의 지지력 및 항타관입성 평가)

  • Lee, Seung-Hyun;Yune, Chan-Young;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.339-347
    • /
    • 2007
  • Penetration tests were performed for two types of steel sheet piles which were driven in clay deposit and sand deposit. Penetration velocity data acquired from penetration tests were used in order to estimate bearing capacity and vibro-driveability of steel sheet piles. Bearing capacity values predicted from Davisson method and Bombard method were greater than that calculated from static bearing capacity formula by 11.9 times and 1.6 times respectively. Vibro-driveability predictions from $T\ddot{u}nkers$ method and ${\beta}$ method show correspondence to field test result fur sand deposit but not for clay deposit. From motor powers estimated by Savinov and Luskin method it can be seen that larger capacities of motor powers are required for clay deposit and adequate hammer was used for sand deposit.

  • PDF