• Title/Summary/Keyword: Motor Bearing

Search Result 470, Processing Time 0.022 seconds

Control of a 3-Phase VR Type Self-Bearing Step Motor (3상 가변형 셀프 베어링 스텝모터의 제어)

  • Kim, Dae-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1974-1980
    • /
    • 2001
  • The control algorithm of a new type self-bearing step motor is presented. The motor actuator is used for both motor and bearing functionality without any redundant coil windings or redundant electromagnets. The self$.$bearing step motor layout and its control method are described. A linearized farce-current-displacement relationship is derived. As the result of the unbalance response approach, the constant torque production is possible fur the supply current regulation algorithm. And even if the bearing functionality is added in the motor functionality, no additional current for bearing functionality is possible, and this leads to minimize the net power loss. Also, the unbalance response shows the independent bearing force and motor torque.

Analysis and Control of a 3-Phase VR Type Self-Bearing Step Motor for Small Angle Control Considered the fringing Effect (프린징효과를 고려한 미세각도 제어용 3상 가변형 셀프베어링 스텝모터의 해석 및 제어)

  • Kim, Daegon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.93-100
    • /
    • 2001
  • The analysis and control of a new type unsymmetrical slotted self-bearing step motor for small angle control is presented. The motor actuator is used for both motor and bearing functionality without any additional coil windings or electromagnets for bearing functionality. A circular-arc, straight-line permeance model for the fringing effect is presented. An unsymmetrical slotted self-bearing step motor layout and control algorithm are described. A new control current generation method using the electromagnets layout geometry, which needs no additional current for bearing functionality, is proposed. As the result of this analysis the fringing effect largely influences on the system characteristics. especially in torque. Even if the bearing functionality is added into the motor functionality, it is shown that the magnitude of torque is not changed.

  • PDF

Analysis and Control of an Unsymmetrical 3-Phase VR Type Self Bearing Step Motor (비대칭 3상 가변형 셀프 베어링 스텝모터의 해석 및 제어)

  • Kim, Dae-Gon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.806-811
    • /
    • 2001
  • The analysis and control algorithm of a new type unsymmetrical self-bearing step motor is presented. The motor actuator is used for both motor and bearing functionality without any redundant coil windings or redudant electromagnets for bearing functionality. Self bearing step motor layout and control current generation method for unsymmetrical position of electromagnets are described. This new current generation method without additional current for bearing functionality leads to minimize the power loss. As the result of the unbalance response approach, the constant torque is possible, even though the bearing functionality is added or not.

  • PDF

Design and Analysis of a Passive-type Self-bearing Step Motor (수동형 셀프-베어링 스텝모터의 설계 및 성능해석)

  • Kwak, Ho-Seong;Choi, Dong-Hoon;Kim, Seung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.415-420
    • /
    • 2006
  • This paper introduces a new self-bearing motor which combines a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the theory of active magnetic bearings and therefore have some difficulties in design of the complicated flux distribution and control of the levitation force and the torque independently, the proposed self-bearing motor has a very simple and novel structure and operating principle. for the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. On the other hand, its rotation principle is quite similar to that of a conventional homopolar step motor. In this paper, we introduce the basic structure and the operating principle in detail, and show some results of FEM analysis to predict the performance of the proposed self-bearing motor and further, to get the optimal design parameters.

  • PDF

Fluid Dynamic Bearing Spindle Motors for DLP (DLP용 유체동압베어링 스핀들모터)

  • Kim, Yeung-Cheol;Seong, Se-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

Design of a Step Motor with a Passive Magnetic Bearing (수동형 마그네틱 베어링이 결합된 스텝 모터의 설계)

  • Kwak, Ho-Seong;Choi, Dong-Hoon;Kim, Seung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1201-1207
    • /
    • 2006
  • This paper introduces a step motor with a passively levitated rotor which comprises a homopolar step motor and a passive magnetic bearing. Compared with conventional self-bearing motors which are mostly based on the active magnetic bearing technology, the proposed motor has a very simple structure and operating principle. For the levitation, it works just like passive magnetic bearings which use the repulsive force between permanent magnets. Halbach array is used to increase the bearing stiffness. On the other hand, its rotation principle is just the same with that of conventional motors. In this paper, we introduce the design scheme to avoid the flux interference possibly produced by electromagnets and permanent magnets, and show some results of FEM analysis to predict the performance of the proposed motor.

4-pole Lorentz Force Type Self-bearing Motor with a New Winding Configuration (새로운 권선법을 이용한 4극 로렌쯔형 자기 부상 모터)

  • ;Yohji Okada
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • This paper introduces a four-Pole Lorentz force type self-bearing motor in which a new winding configuration is proposed to enable the sing1e winding to function both as a synchronous PM motor and as a magnetic bearing. The Lorentz force type has some good points such as the linearity of control force, freedom from flux saturation, and high efficiency, unlike conventional self-bearing motors using a reluctance force. And also, compared with the previously proposed eight-pole type, this four-pole self-bearing motor is more profitable for high rotational speed. In this paper, mathematical expressions of torque and radial force in the proposed self-bearing motor are derived to show that they can be separately controlled regardless of rotational speed and time. For verification of the theory, a prototype is made, where a ring-shape outer rotor is actively controlled in two radial directions while the other motions are passively stable supposing the radial stability. Through some experiments. it is shown that the proposed scheme can provide high capability and feasibility for a small high-speed self-bearing motor.

The Numerical Analysis of Spindle Motor Bearing Composed of Herringbone Groove Journal and Spiral Groove Thrust Bearing

  • Oh, Sang-Man;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.93-102
    • /
    • 2001
  • Ball bearings have been widely used for the spindle motor bearing in various kinds of information storage devices. Recently many researchers have been trying to replace ball bearings with fluid film bearings because of their superior NRRO(non-repeatable runout) characteristics. In this study, a numerical analysis has been conducted for the complicate bearing system composed of herringbone groove journal bearing and spiral groove thrust bearing for the spindle motor of the information storage device. At first, spindle motor bearing is modeled as journal bearing part and thrust bearing part separately, and then observed various influences of geometric parameters. Previous studies had considered only the translational motion of the journal bearing. However, this study takes the additional 2-degree of freedom rotation into consideration to attempt to describe the real motion of the spindle bearing. As a result, rotational stiffness coefficients and rotational damping coefficients are obtained. In addition, a spindle bearing system made up of four bearings is modeled and interpreted at once and coefficients of dynamic characteristics of each bearing are obtained. Finally, an eigen analysis of bearing system is made with these results. Through this analysis, it is possible to estimate an unstable condition of the system for given geometric parameters and to propose a method which is able to avoid the unstable condition by a proper adjustment of geometric parameters.

  • PDF

Development of a HDD Spindle Motor Using Passive Magnet Bearing and Fluid Dynamic Journal Bearing (수동형 자기 베어링과 유체 동압 저널베어링을 이용한 HDD용 스핀들 모터 개발)

  • Lee, Chung-Ill;Kim, Hak-Woon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.473-477
    • /
    • 2005
  • This paper presents a highly efficient HDD (Hard Disk Drive) spindle motor with a passive magnetic thrust bearing and a fluid dynamic journal bearing and its effectiveness is verified through experiment. It eliminates the mechanical friction loss of a thrust bearing which is around 18% of total power consumption of a 3.5' HDD spindle motor, by replacing a conventional fluid dynamic thrust bearing with a passive magnetic thrust bearing. The passive magnetic thrust bearing using permanent magnets is inherently unstable in radial direction. However, the radial fluid dynamic force of the fluid dynamic journal bearing counterbalances the radial magnetic force of magnetic thrust bearing to achieve the stability as the motor spins up. It has less or equivalent runout and less flying height than the conventional spindle motor.

  • PDF

Lorentz Force Type Self-Bearing Motor with 2-Pole Flux Distribution for Levitation and 4-Pole for Rotation (부상용 2극과 회전용 4극 자속 분포를 갖는 로렌쯔형 자기 부상 모터)

  • ;Yohji Okada
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.482-487
    • /
    • 2001
  • This paper introduces a Lorentz force type four-pole self-bearing motor, where the new pole arrangement of a stator is intended to function both as a synchronous PM motor and as a magnetic bearing. The Lorentz force type has some good points such as linearity of control force, freedom from flux saturation, and high efficiency unlike conventional self-bearing motors. Mathematical expressions of torque and radial force are derived to show that they can be separately controlled regardless of rotational speed and time. To verify the proposed theory, a prototype is made, where a ring-shape outer is actively controlled in two radial directions while the other motions are passively stable supposing the radial stability. Through some experiments, it is shown that the proposed scheme can provide high capability and feasibility for a small high-speed self-bearing motor.

  • PDF