• 제목/요약/키워드: Motion-field estimation

검색결과 124건 처리시간 0.03초

Motion Field Estimation Using U-Disparity Map in Vehicle Environment

  • Seo, Seung-Woo;Lee, Gyu-Cheol;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.428-435
    • /
    • 2017
  • In this paper, we propose a novel motion field estimation algorithm for which a U-disparity map and forward-and-backward error removal are applied in a vehicular environment. Generally, a motion exists in an image obtained by a camera attached to a vehicle by vehicle movement; however, the obtained motion vector is inaccurate because of the surrounding environmental factors such as the illumination changes and vehicles shaking. It is, therefore, difficult to extract an accurate motion vector, especially on the road surface, due to the similarity of the adjacent-pixel values; therefore, the proposed algorithm first removes the road surface region in the obtained image by using a U-disparity map, and uses then the optical flow that represents the motion vector of the object in the remaining part of the image. The algorithm also uses a forward-backward error-removal technique to improve the motion-vector accuracy and a vehicle's movement is predicted through the application of the RANSAC (RANdom SAmple Consensus) to the previously obtained motion vectors, resulting in the generation of a motion field. Through experiment results, we show that the performance of the proposed algorithm is superior to that of an existing algorithm.

Nonlinear hierarchical motion estimation method based on decompositionof the functional domain (범함수 정의역 분할에 바탕을 둔 비선형 계층적 움직임 추정기법)

  • 심동규;박래홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제21권4호
    • /
    • pp.807-821
    • /
    • 1996
  • In this paper, we proposed a nonlinear hierarchical mtion estimation method. Generally, the conventional hierarchical motion estimation methods have been proposed for fast convergence and detection of large motions. But they have a common drawback that large error in motion estimation is propapated across motion discontinuities. This artifiact is due to the constriaint of motion continuity and the linear interpolation of motion vectors between hierarchical levels. In this paper, we propose an effective hierarchical motion estimation mechod that is robust to motion discontinuities. The proposed algorithm is based on the decomposition of the functional domain for optimizing the intra-level motion estimation functional. Also, we propose an inter-level nonlinear motion estimation equation rather than using the conventional linearprojection scheme of motion field. computer simulations with several test sequences show tht the proposed algorithm performs better than several conventional methods.

  • PDF

Fractal Depth Map Sequence Coding Algorithm with Motion-vector-field-based Motion Estimation

  • Zhu, Shiping;Zhao, Dongyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.242-259
    • /
    • 2015
  • Three-dimensional video coding is one of the main challenges restricting the widespread applications of 3D video and free viewpoint video. In this paper, a novel fractal coding algorithm with motion-vector-field-based motion estimation for depth map sequence is proposed. We firstly add pre-search restriction to rule the improper domain blocks out of the matching search process so that the number of blocks involved in the search process can be restricted to a smaller size. Some improvements for motion estimation including initial search point prediction, threshold transition condition and early termination condition are made based on the feature of fractal coding. The motion-vector-field-based adaptive hexagon search algorithm on the basis of center-biased distribution characteristics of depth motion vector is proposed to accelerate the search. Experimental results show that the proposed algorithm can reach optimum levels of quality and save the coding time. The PSNR of synthesized view is increased by 0.56 dB with 36.97% bit rate decrease on average compared with H.264 Full Search. And the depth encoding time is saved by up to 66.47%. Moreover, the proposed fractal depth map sequence codec outperforms the recent alternative codecs by improving the H.264/AVC, especially in much bitrate saving and encoding time reduction.

Reduction of Block Overlap in Motion Estimation

  • Cho, Seongsoo;Shrestha, Bhanu;Lee, Jongsup
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제6권2호
    • /
    • pp.10-12
    • /
    • 2014
  • This work is based on the motion estimation to handle the ill-posed nature. The algorithm used in this study that performs the motion estimation for overlapped block is used to calculate with using pixel of neighborhood block with higher correlation and present block by considering the correlation level of neighborhood block. The proposed method shows in a significant improvement in the quality of the mothion field when comparing the conventional methods.

A Distance Estimation Method of Object′s Motion by Tracking Field Features and A Quantitative Evaluation of The Estimation Accuracy (배경의 특징 추적을 이용한 물체의 이동 거리 추정 및 정확도 평가)

  • 이종현;남시욱;이재철;김재희
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.621-624
    • /
    • 1999
  • This paper describes a distance estimation method of object's motion in soccer image sequence by tracking field features. And we quantitatively evaluate the estimation accuracy We suppose that the input image sequence is taken with a camera on static axis and includes only zooming and panning transformation between frames. Adaptive template matching is adopted for non-rigid object tracking. For background compensation, feature templates selected from reference frame image are matched in following frames and the matched feature point pairs are used in computing Affine motion parameters. A perspective displacement field model is used for estimating the real distance between two position on Input Image. To quantitatively evaluate the accuracy of the estimation, we synthesized a 3 dimensional virtual stadium with graphic tools and experimented on the synthesized 2 dimensional image sequences. The experiment shows that the average of the error between the actual moving distance and the estimated distance is 1.84%.

  • PDF

De-interlacing Algorithm Using Integral Projection-based Motion Estimation Considering Region Of Interest (관심영역 단위의 적분 프로젝션기반 움직임 추정을 사용한 순차주사화 알고리즘)

  • Kim, Young-Duk;Chang, Joon-Young;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제45권3호
    • /
    • pp.20-29
    • /
    • 2008
  • In this paper, we propose a do-interlacing algorithm using integral projection-based motion estimation considering Region Of Interest(ROI). The proposed motion estimation method finds the motion of the given ROI accurately with low computational cost. In order to incorporate the motion estimation in do-interlacing, an entire image is first segmented into multiple ROIs according to the temporally predicted block-wise motion types and spatial positions. Then, motion vectors of respective ROIs are obtained by the integral projection method. In this paper, totally five ROIs, one for the global motion and four for the local motions, are made, and therefore, five motion vectors are produced for each field. By using the estimated motion vectors, motion compensation is performed for increasing the vortical resolution of the converted frames. Finally, do-interlaced frames are obtained by effectively combining the results of motion compensation and stable intra-field do-interlacing according to the reliability of motion compensation. Experimental results show that the proposed algorithm provides better image quality than existing algorithms in both subjective and objective measures.

Motion Field Estimation Using U-disparity Map and Forward-Backward Error Removal in Vehicle Environment (U-시차 지도와 정/역방향 에러 제거를 통한 자동차 환경에서의 모션 필드 예측)

  • Seo, Seungwoo;Lee, Gyucheol;Lee, Sangyong;Yoo, Jisang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제40권12호
    • /
    • pp.2343-2352
    • /
    • 2015
  • In this paper, we propose novel motion field estimation method using U-disparity map and forward-backward error removal in vehicles environment. Generally, in an image obtained from a camera attached in a vehicle, a motion vector occurs according to the movement of the vehicle. but this motion vector is less accurate by effect of surrounding environment. In particular, it is difficult to extract an accurate motion vector because of adjacent pixels which are similar each other on the road surface. Therefore, proposed method removes road surface by using U-disparity map and performs optical flow about remaining portion. forward-backward error removal method is used to improve the accuracy of the motion vector. Finally, we predict motion of the vehicle by applying RANSAC(RANdom SAmple Consensus) from acquired motion vector and then generate motion field. Through experimental results, we show that the proposed algorithm performs better than old schemes.

Frame-Adaptive Distortion Estimation for Motion Compensated Interpolated Frame (움직임 보상 보간 프레임에 대한 프레임 적응적 왜곡 예측 기법)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • 제12권3호
    • /
    • pp.1-8
    • /
    • 2012
  • Video FRUC (Frame Rate Up Conversion) has been a technique of great interest due to its diversified applications in consumer electronics. Most advanced FRUC algorithms adopt a motion interpolation technique to determine the motion vector field of interpolated frames. But, in some applications, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame is reconstructed. For this aim, this paper proposes a distortion estimation for motion compensated interpolation frame using frame-adaptive distortion estimation. The proposed method is applied for the symmetric motion estimation and compensated scheme and then analyzed by three different approaches, that is, forward estimation, backward estimation and adaptive bi-directional estimation schemes. Through computer simulations, it is shown that the proposed bi-directional estimation method outperforms others and can be effectively applied for FRUC.

Adaptive Extended Bilateral Motion Estimation Considering Block Type and Frame Motion Activity (블록의 성질과 프레임 움직임을 고려한 적응적 확장 블록을 사용하는 프레임율 증강 기법)

  • Park, Daejun;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • 제18권3호
    • /
    • pp.342-348
    • /
    • 2013
  • In this paper, a novel frame rate up conversion (FRUC) algorithm using adaptive extended bilateral motion estimation (AEBME) is proposed. Conventionally, extended bilateral motion estimation (EBME) conducts dual motion estimation (ME) processes on the same region, therefore involves high complexity. However, in this proposed scheme, a novel block type matching procedure is suggested to accelerate the ME procedure. We calculate the edge information using sobel mask, and the calculated edge information is used in block type matching procedure. Based on the block type matching, decision will be made whether to use EBME. Motion vector smoothing (MVS) is adopted to detect outliers and correct outliers in the motion vector field. Finally, overlapped block motion compensation (OBMC) and motion compensated frame interpolation (MCFI) are adopted to interpolate the intermediate frame in which OBMC is employed adaptively based on frame motion activity. Experimental results show that this proposed algorithm has outstanding performance and fast computation comparing with EBME.

Fast Motion Estimation Based on a Modified Median Operation for Efficient Video Compression

  • Kim, Jongho
    • Journal of information and communication convergence engineering
    • /
    • 제12권1호
    • /
    • pp.53-59
    • /
    • 2014
  • Motion estimation is a core part of most video compression systems since it directly affects the output video quality and the encoding time. The full search (FS) technique gives the highest visual quality but has the problem of a significant computational load. To solve this problem, we present in this paper a modified median (MMED) operation and advanced search strategies for fast motion estimation. The proposed MMED operation includes a temporally co-located motion vector (MV) to select an appropriate initial candidate. Moreover, we introduce a search procedure that reduces the number of thresholds and simplifies the early termination conditions for the determination of a final MV. The experimental results show that the proposed approach achieves substantial speedup compared with the conventional methods including the motion vector field adaptive search technique (MVFAST) and predictive MVFAST (PMVFAST). The proposed algorithm also improves the PSNR values by increasing the correlation between the MVs, compared with the FS method.