• 제목/요약/키워드: Motion transform

Search Result 461, Processing Time 0.023 seconds

Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method (시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성)

  • NAM KI-WOO;LEE KUN-CHAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.

A Frequency Analysis of the Control Input for Right Test (비행시험용 조종입력의 주파수분석)

  • Kwon Tae-Hee;Chang Jae-Won;Choi Sun-Woo;Seong Kie-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.1 s.20
    • /
    • pp.39-48
    • /
    • 2005
  • After the development of the Firefly, flight tests have been performed to verify the performance and get the parameters for the mathematical model of the aircraft. The flight test data is used to get parameters for the mathematical model of the aircraft through the parameter identification process. An arbitrary control input is applied to the test flight which is a part of parameter identification process. A square wave has been used a control input which is called Doublet signal. The aspect of the signal is same length and magnitude in both (+) and (-) directions such as sine wave. The Doublet signal is composed of a dominant frequency and many high frequencies, so that it is appropriate signal to excite the motion of an aircraft. In this paper, the control input of the flight test data has been analyzed to check the efficiency of the control input using DFT(Discrete Fourier Transform). From the result of analysis, an alternative input was extracted.

Fluid flow profile in the "orthotropic plate+compressible viscous fluid+rigid wall" system under the action of the moving load on the plate

  • Akbarov, Surkay D.;Huseynova, Tarana V.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.289-309
    • /
    • 2020
  • The paper studies the fluid flow profile contained between the orthotropic plate and rigid wall under the action of the moving load on the plate and main attention is focused on the fluid velocity profile in the load moving direction. It is assumed that the plate material is orthotropic one and the fluid is viscous and barotropic compressible. The plane-strain state in the plate and the plane flow of the fluid is considered. The motion of the plate is described by utilizing the exact equations of elastodynamics for anisotropic bodies, however, the flow of the fluid by utilizing the linearized Navier-Stokes equations. For the solution of the corresponding boundary value problem, the moving coordinate system associated with the moving load is introduced, after which the exponential Fourier transformation is employed with respect to the coordinate which indicates the distance of the material points from the moving load. The exact analytical expressions for the Fourier transforms of the sought values are obtained, the originals of which are determined numerically. Presented numerical results and their analyses are focused on the question of how the moving load acting on the face plane of the plate which is not in the contact with the fluid can cause the fluid flow and what type profile has this flow along the thickness direction of the strip filled by the fluid and, finally, how this profile changes ahead and behind with the distance of the moving load.

Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.343-371
    • /
    • 2016
  • In this paper thermo-mechanical vibration analysis of a porous functionally graded (FG) Timoshenko beam in thermal environment with various boundary conditions are performed by employing a semi analytical differential transform method (DTM) and presenting a Navier type solution method for the first time. The temperature-dependent material properties of FG beam are supposed to vary through thickness direction of the constituents according to the power-law distribution which is modified to approximate the material properties with the porosity phases. Also the porous material properties vary through the thickness of the beam with even and uneven distribution. Two types of thermal loadings, namely, uniform and linear temperature rises through thickness direction are considered. Derivation of equations is based on the Timoshenko beam theory in order to consider the effect of both shear deformation and rotary inertia. Hamilton's principle is applied to obtain the governing differential equation of motion and boundary conditions. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of several parameters such as porosity distributions, porosity volume fraction, thermal effect, boundary conditions and power-low exponent on the natural frequencies of the FG beams in detail. It is explicitly shown that the vibration behavior of porous FG beams is significantly influenced by these effects. Numerical results are presented to serve benchmarks for future analyses of FG beams with porosity phases.

Durability Evaluation of Stainless Steel Conductive Yarn under Various Sewing Method by Repeated Strain and Abrasion Test (반복신장 및 마모강도시험을 통한 봉제방법에 따른 스테인리스 스틸 전도사의 내구성 평가)

  • Jung, Imjoo;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.474-485
    • /
    • 2018
  • Smart sensors and connected devices have changed the concept of garments along with IT technology convergent garments that transform the performance of basic functions. Various types of products have been researched and developed due to the increased interest in smart clothing; in addition, studies based on physical and mechanical properties have also been actively studied to improve accuracy and reliability. This study represents a basic study for the development of smart textiles based on motion recognition for the surfing practice of beginners interested in IT convergence type. A physical durability evaluation of conductive yarn according to sewing method was later carried out. This study is a conditional specimen sewn with cotton lower thread and 100mm pattern length based on the results of previous studies. The durability of the conductive yarn according to the sewing method was evaluated according to the sewing method. Durability was evaluated by two kinds of repeated strain and abrasion tests. The specimen with applied cotton in a lower thread zigzag pattern 2mm stitch size 100mm stitch length was shown to have the most suitable durability for smart textile.

Exercise Recognition using Accelerometer Based Body-Attached Platform (가속도 센서 기반의 신체 부착형 플랫폼을 이용한 운동 인식)

  • Kim, Joo-Hyung;Lee, Jeong-Eom;Park, Yong-Chan;Kim, Dae-Hwan;Park, Gwi-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2275-2280
    • /
    • 2009
  • u-Healthcare service is one of attractive applications in ubiquitous environment. In this paper, we propose a method to recognize exercises using a new accelerometer based body-attached platform for supporting u-Healthcare service. The platform consists of a device for measuring accelerometer data and a device for receiving the data. The former measures a user's motion data using a 3-axis accelerometer. The latter transmits the accelerometer data to a computer for recognizing the user's exercise. The algorithm for exercise recognition classifies the type of exercise using principle components analysis(PCA) from the accelerometer data transformed by discrete fourier transform(DFT), and estimates the repetition count of the recognized exercise using a peak detection algorithm. We evaluate the performance of the algorithm from the accuracy of the recognition of exercise type and the error rate of the estimation of repetition count. In our experimental result, the algorithm shows the accuracy about 98%.

A Two Layered Approach for Animation Sketching

  • Sohn, Ei-Sung;Jeon, Jae-Woong;Park, Tae-Jin;Sohn, Won-Sung;Lim, Soon-Bum;Choy, Yoon-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1736-1744
    • /
    • 2009
  • In this paper, we present an animation sketching system using a two layered approach. Animation sketching is a popular technique to create informal animations but it is often suffered by the low-quality output due to a trade-off between convenience and complexity. Our aim is to support sketching practical animation scenes easily and fast while not complicating the simple sketching interface. The key idea is to combine two conceptual stop motion layers, a whiteboard and cutout animation layer, in a seamless interface. As a background, the whiteboard animation layer handles stroke-oriented objects, while the cutout animation layer takes charge of transform-oriented objects. We found that this approach enables users to express more complicated animation fast while still maintaining a concise sketching interface. We demonstrate the usability and flexibility through resulting animations from user experiments.

  • PDF

Hybrid perfectly-matched-layers for transient simulation of scalar elastic waves

  • Pakravan, Alireza;Kang, Jun Won;Newtson, Craig M.;Kallivokas, Loukas F.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.685-705
    • /
    • 2014
  • This paper presents a new formulation for forward scalar wave simulations in semi-infinite media. Perfectly-Matched-Layers (PMLs) are used as a wave absorbing boundary layer to surround a finite computational domain truncated from the semi-infinite domain. In this work, a hybrid formulation was developed for the simulation of scalar wave motion in two-dimensional PML-truncated domains. In this formulation, displacements and stresses are considered as unknowns in the PML domain, while only displacements are considered to be unknowns in the interior domain. This formulation reduces computational cost compared to fully-mixed formulations. To obtain governing wave equations in the PML region, complex coordinate stretching transformation was introduced to equilibrium, constitutive, and compatibility equations in the frequency domain. Then, equations were converted back to the time-domain using the inverse Fourier transform. The resulting equations are mixed (contain both displacements and stresses), and are coupled with the displacement-only equation in the regular domain. The Newmark method was used for the time integration of the semi-discrete equations.

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun;Jung, Unsang;Kim, Suhwan;Jung, Woonggyu;Oh, Junghwan;Kang, Hyun Wook;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

Experimental investigation of amplitude-dependent self-excited aerodynamic forces on a 5:1 rectangular cylinder

  • Wang, Qi;Wu, Bo;Liao, Hai-li;Mei, Hanyu
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • This paper presents a study on amplitude-dependent self-excited aerodynamic forces of a 5:1 rectangular cylinder through free vibration wind tunnel test. The sectional model was spring-supported in a single degree of freedom (SDOF) in torsion, and it is found that the amplitude of the free vibration cylinder model was not divergent in the post-flutter stage and was instead of various stable amplitudes varying with the wind speed. The amplitude-dependent aerodynamic damping is determined using Hilbert Transform of response time histories at different wind speeds in a smooth flow. An approach is proposed to extract aerodynamic derivatives as nonlinear functions of the amplitude of torsional motion at various reduced wind speeds. The results show that the magnitude of A2*, which is related to the negative aerodynamic damping, increases with increasing wind speed but decreases with vibration amplitude, and the magnitude of A3* also increases with increasing wind speed but keeps stable with the changing amplitude. The amplitude-dependent aerodynamic derivatives derived from the tests can also be used to estimate the post-flutter response of 5:1 rectangular cylinders with different dynamic parameters via traditional flutter analysis.