• 제목/요약/키워드: Motion trajectory

검색결과 679건 처리시간 0.027초

속도분리를 이용한 여유자유도 로봇의 최적 경로계획 (An Optimal Trajectory Planning for Redundant Robot Manipulators Based on Velocity Decomposition)

  • 이지홍;원경태
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.836-840
    • /
    • 1999
  • Linear motion and angular motion in task space are handled separately in joint velocity planning for redundant robot manipulators. In solving inverse kinematic equations with given joint velocity limits, we consider the order of priority for linear motion and angular motion. The proposed method will be useful in such applications where only linear motions are important than angular motions or vice versa.

  • PDF

동적 균형을 위한 동작 변환 (Motion Adjustment for Dynamic Balance)

  • 탁세윤;송오영;고형석
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제5권2호
    • /
    • pp.33-41
    • /
    • 1999
  • 본 논문은 동적인 균형을 위한 새로운 동작변환 기법을 제시한다. 이는 불균형한 동작을 원래의 동작 특성을 최대한 보존하면서 균형잡힌 동작으로 고쳐주는 새로운 동작 편집 기법으로서, 정적 균형만을 다루었던 기존의 연구와는 달리, 동적인 동작의 균형잡기 문제를 해결한다. 이 알고리즘은 두발 로봇의 균형제어에 널리 쓰이는 개념인 zero moment point (ZMP)의 자취를 구한 후, 이를 분석하는 방법을 통해서 실현되며 구체적으로는 다음과 같은 네단계로 이루어진다. 먼저, 동작 데이타를 스플라인커브로 피팅한다. 그 다음 이 데이타를 사용하여 ZMP 자취를 계산하여, 동작중에 불균형이 되는 부분을 찾는다. 여기서, 불균형은 ZMP 자취가 지지영역 밖으로 벗어나는 구간으로 정의된다. 다음으로 벗어난 ZMP 자취를 지지영역 안으로 투영시켜 새로운 ZMP 자취를 구한다. 마지막으로 구해진 새로운 ZMP 자취에 부합하도록 원래의 동작을 수정한다. 이 과정은 원래의 동작을 최대한 보존할 수 있도록 constrained optimization problem으로 수식화된다. 우리는 실험을 통해 이 알고리즘이 kinematic한 방법으로 편집된 동작에 역학적 사실성을 보장하는 유용한 방법임을 입증한다.

  • PDF

입력 토오크 constraint를 가진 로보트 매니플레이터에 대한 최소 시간 궤적 계획 (A Minimum time trajectory planning for robotic manipulators with input torque constraint)

  • 홍인근;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.445-449
    • /
    • 1989
  • Achievement of a straight line motion in the Cartesian space has a matter of great importance. Minimization of task execution time with linear interpolation in the joint space, accomplishing of a approximation of straight line motion in the Cartesian coordinate is considered as the prespecified task. Such determination yields minimum time joint-trajectory subject to input torque constraints. The applications of these results for joint-trajectory planning of a two-link manipulator with revolute joints are demonstrated by computer simulations.

  • PDF

이족 보행 로봇의 궤적의 최적화 계획에 관한 연구 (A Study on the Trajectory Optimization Planning of Biped Walking Machine)

  • 김창부;조현석
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.157-167
    • /
    • 1998
  • In this paper it is purpose that reduces joint torques and their rate of change through optimizing trajectory planning of biped walking machine. The motion of biped walking machine is divided into leg motion for walking and body motion for keeping balance. The leg motion is planned by three phases, that are deploy, swing, and place phases, in terms of the state of foot against floor. The distribution of time assigned to each phase is optimized and that causes leg joint torques and their rate of change to minimize. The body notion is produced by using optimal control theory which minimizes body joint torques and satisfies Z.M.P. constraints defined as region of each phase.

  • PDF

유전 알고리즘 기반의 이족보행로봇 시스템에 관한 연구 (A Study on Genetic Algorithm-based Biped Robot System)

  • 공정식;한경수;김진걸
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.135-143
    • /
    • 2003
  • This paper presents the impact minimization of a biped robot by using genetic algorithm. In case we want to accomplish the designed plan under the special environments, a robot will be required to have walking capability and patterns with legs, which are in a similar manner as the gaits of insects, dogs and human beings. In order to walk more effectively, studies of mobile robot movement are needed. To generate optimal motion for a biped robot, we employ genetic algorithm. Genetic algorithm is searching for technology that can look for solution from the whole district, and it is possible to search optimal solution from a fitness function that needs not to solve differential equation. In this paper, we generate trajectories of gait and trunk motion by using genetic algorithm. Using genetic algorithm not only on gait trajectory but also on trunk motion trajectory, we can obtain the smoothly stable motion of robot that has the least impact during the walk. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

Constant speed, variable ascension rate, helical trajectories for airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.73-105
    • /
    • 2018
  • A particular type of constant speed helical trajectory, with variable ascension rate, is proposed. Such trajectories are candidates of choice as motion primitives in automatic airplane trajectory planning; they can also be used by airplanes taking off or landing in limited space. The equations of motion for airplanes flying on such trajectories are exactly solvable. Their solution is presented, together with an analysis of the restrictions imposed on the geometrical parameters of the helical paths by the dynamical abilities of an airplane. The physical quantities taken into account are the airplane load factor, its lift coefficient, and the thrust its engines can produce. Formulas are provided for determining all the parameters of trajectories that would be flyable by a particular airplane, the final altitude reached, and the duration of the trajectory. It is shown how to construct speed interval tables, which would appreciably reduce the calculations to be done on board the airplane. Trajectories are characterized by their angle of inclination, their radius, and the rate of change of their inclination. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and the F-16 Fighting Falcon.

A Measurement System for 3D Hand-Drawn Gesture with a PHANToMTM Device

  • Ko, Seong-Young;Bang, Won-Chul;Kim, Sang-Youn
    • Journal of Information Processing Systems
    • /
    • 제6권3호
    • /
    • pp.347-358
    • /
    • 2010
  • This paper presents a measurement system for 3D hand-drawn gesture motion. Many pen-type input devices with Inertial Measurement Units (IMU) have been developed to estimate 3D hand-drawn gesture using the measured acceleration and/or the angular velocity of the device. The crucial procedure in developing these devices is to measure and to analyze their motion or trajectory. In order to verify the trajectory estimated by an IMU-based input device, it is necessary to compare the estimated trajectory to the real trajectory. For measuring the real trajectory of the pen-type device, a PHANToMTM haptic device is utilized because it allows us to measure the 3D motion of the object in real-time. Even though the PHANToMTM measures the position of the hand gesture well, poor initialization may produce a large amount of error. Therefore, this paper proposes a calibration method which can minimize measurement errors.

룰드서피스 듀얼곡률이론을 이용한 로봇경로계획 (A Robot Trajectory Planning based on the Dual Curvature Theory of a Ruled Surface)

  • 박상민;송문상;김재희;유범상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.482-487
    • /
    • 2002
  • This paper presents a robot trajectory generation method based on the dual curvature theory of ruled surfaces. Robot trajectory can be represented as a ruled surface generated by the TCP(Tool Center Point) and my unit vector among the tool frame. Dual curvature theory of ruled surfaces provides the robot control algorithm with the motion property parameters. With the differential properties of the ruled surface, the linear and angular motion properties of the robot end effector can be utilized in the robot trajectory planning.

  • PDF

Near Minimum-Time Trajectory Planning for Wheeled Mobile Robots with Piecewise Constant Voltages

  • Park, Jong-Suk;Kim, Munsang;Kim, Byung-Kook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.30.6-30
    • /
    • 2001
  • We build near minimum-time trajectory planning algorithm for Wheeled mobile robots (WMRs) With Piece-Wise Constant control voltages satisfying i) initial and final postures and velocities as well as ii) voltage constraints We consider trajectory planning problem for cornering motion with a path-deviation requirement for obstacle avoidance. We divide our trajectory planning algorithm for cornering motion into five ordered sections: translational, transient, rotational, transient, and translational sections. Transforming dynamics into uncorrelated form with respect to translational and rotational velocities, we can make controls for translation/rotational velocities to be independent. By planning each section with constant voltages, and integrating five sections with adjustment of numbers of steps, the overall trajectory is planned. The performance is very close to the minimum-time solution, which is validated via simulation studies.

  • PDF

동영상 검색을 위한 템포럴 텍스처 모델링 (Temporal Texture modeling for Video Retrieval)

  • 김도년;조동섭
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권3호
    • /
    • pp.149-157
    • /
    • 2001
  • In the video retrieval system, visual clues of still images and motion information of video are employed as feature vectors. We generate the temporal textures to express the motion information whose properties are simple expression, easy to compute. We make those temporal textures of wavelet coefficients to express motion information, M components. Then, temporal texture feature vectors are extracted using spatial texture feature vectors, i.e. spatial gray-level dependence. Also, motion amount and motion centroid are computed from temporal textures. Motion trajectories provide the most important information for expressing the motion property. In our modeling system, we can extract the main motion trajectory from the temporal textures.

  • PDF