• Title/Summary/Keyword: Motion trajectory

Search Result 679, Processing Time 0.022 seconds

Rocking Vibration of Rigid Block Structure Accompaning Sliding Motion - In the Case of Two Dimensional Harmonic Excitation with Different Frequencies - (미끄럼운동을 동반하는 강체 블록 구조물의 로킹진동 - 수평방향과 수직방향의 여진진동수가 다른 경우에 대하여 -)

  • Jeong, Man-Yong;Kim, Jeong-Ho;Yang, In-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.879-889
    • /
    • 2003
  • This research deals with the nonlinearities of rocking vibration associated with impact and sliding on the rocking behavior of rigid block under two dimensional sinusoidal excitation which has different frequencies in two excitation direction. The varied excitation direction influences not only the rocking response but also the sliding motion and the rocking response shape. Chaotic responses are observed in wider excitation amplitude region, when the frequencies in each excitation direction are different. The complex behavior of chaotic response, in the phase space, is related with the trajectory of base excitation and sliding motion.

Determination of the Minimum Number of Intermediate Points for the Robot Manipulator Cartesian Stright Motion (로보트 매니퓰레이터의 카르테시안 직선운동을 위한 경로집의 최소화)

  • 오세현;전홍태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.144-151
    • /
    • 1988
  • Between any two points in the Cartesian space, the straight motion has many distinct advantages in path/trajectory plannings, specially in a crowded workspace. But to achieve this motion is a nontrivial task. One standard way to approximate this motion is to plae enough intermediate points along the desired path and linearly interpolate two adjacent intermediate points in the joint space. In this approach, however, the determination of the minimum number of intermediate points is very important from several aspects. A scheme that can effectively accomplish this purpose is established in this paper. This scheme is based on several search methods. The results are demonstrated using the PUMA 560 series manipulator.

  • PDF

Model-Based Rolling Motion Control of an One-wheeled Robot Considering the Pitching Motion of a Gyroscopic Effect (자이로 효과의 피칭 모션을 고려한 한 바퀴 로봇의 모델 기반 롤링 모션 제어)

  • Lee, Sang-Deok;Jung, Seul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.335-341
    • /
    • 2016
  • In general, a yawing motion concept is used for the lateral control of one wheel robot where the gimbal system is located horizontally. In this paper, another concept of the vertically located gimbal system is presented for the same purpose. Although the vertical concept undergoes an instability more easily than the horizontal one, the pitching motion of the gyroscopic effect is considered. Firstly, the trade-off relation between two balancing concepts are investigated by comparing the gyroscopic mechanism. Secondly, the dynamic model for the problem of the proposed concept is derived using the oscillatory inverted stick model. Thirdly, the stability of the model is analyzed using the phase trajectory method. Finally, the control performance of the system by a vibration controller is simulated.

Creating Deep Learning-based Acrobatic Videos Using Imitation Videos

  • Choi, Jong In;Nam, Sang Hun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.713-728
    • /
    • 2021
  • This paper proposes an augmented reality technique to generate acrobatic scenes from hitting motion videos. After a user shoots a motion that mimics hitting an object with hands or feet, their pose is analyzed using motion tracking with deep learning to track hand or foot movement while hitting the object. Hitting position and time are then extracted to generate the object's moving trajectory using physics optimization and synchronized with the video. The proposed method can create videos for hitting objects with feet, e.g. soccer ball lifting; fists, e.g. tap ball, etc. and is suitable for augmented reality applications to include virtual objects.

Design and Implementation of NUI-based Athletic Scene Generation System

  • Choi, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.115-120
    • /
    • 2019
  • In this paper, we propose a system and an intuitive interface that can create an athletic scene among athletes. We allow you to enter motion as if you were playing a game, so that the user's action becomes the player's action. The user can take various actions in front of the motion sensor and control the object flying to him. When a user specifies an opponent to pass or attack, and takes appropriate action in front of the motion sensor, the movement trajectory of the object is automatically generated by the physical optimization technique in accordance with the motion. In this way, you can create scenes where multiple players play together in a virtual environment. The method of this paper will be very useful for rapid prototyping for cinematic trailers of based on athletics games or animations.

NMPC-based Obstacle Avoidance and Whole-body Motion Planning for Mobile Manipulator (모바일 매니퓰레이터의 NMPC 기반 장애물 회피 및 전신 모션 플래닝)

  • Kim, Sunhong;Sathya, Ajay;Swevers, Jan;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.359-364
    • /
    • 2022
  • This study presents a nonlinear model predictive control (NMPC)-based obstacle avoidance and whole-body motion planning method for the mobile manipulators. For the whole-body motion control, the mobile manipulator with an omnidirectional mobile base was modeled as a nine degrees-of-freedom (DoFs) serial open chain with the PPR (base) plus 6R (arm) joints, and a swept sphere volume (SSV) was applied to define a convex hull for collision avoidance. The proposed receding horizon control scheme can generate a trajectory to track the end-effector pose while avoiding the self-collision and obstacle in the task space. The proposed method could be calculated using an interior-point (IP) method solver with 100[ms] sampling time and ten samples of horizon size, and the validation of the method was conducted in the environment of Pybullet simulation.

A Study on the Application of the Curvature Theory of Ruled Surfaces for the Development of Five-Axis NC Machine Real-Time Control Algorithm (5축 NC 기계의 실시간 제어기법 개발을 위한 룰드 서피스 곡률 이론의 적용 연구)

  • Kim, Jae-Hui;Yu, Beom-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.182-189
    • /
    • 2000
  • This paper presents the real time control method of 5-axis NC machine for high precision and productivity based on the curvature theory, of a ruled surface. The trajectory, of NC machine is described by, way of a ruled surface generated by the points on part surface and tool axis direction vector. The curvature theory, of a ruled surface is then applied to deter-mine the motion parameters of the 5-axis machine for control. The controller computes position, orientation, and differential motion parameters of the tool in each sampling period. The real-time approach produces smoother surfaces and requires substantially less machining time compared to conventional off-line approaches. The propose real-time control method based of the curvature theory of a ruled surface may give new methodology of precision 5-axis machine control.

Real-time Humanoid Robot Trajectory Estimation and Navigation with Stereo Vision (스테레오 비전을 이용한 실시간 인간형 로봇 궤적 추출 및 네비게이션)

  • Park, Ji-Hwan;Jo, Sung-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.8
    • /
    • pp.641-646
    • /
    • 2010
  • This paper presents algorithms for real-time navigation of a humanoid robot with a stereo vision but no other sensors. Using the algorithms, a robot can recognize its 3D environment by retrieving SIFT features from images, estimate its position through the Kalman filter, and plan its path to reach a destination avoiding obstacles. Our approach focuses on estimating the robot’s central walking path trajectory rather than its actual walking motion by using an approximate model. This strategy makes it possible to apply mobile robot localization approaches to humanoid robot localization. Simple collision free path planning and motion control enable the autonomous robot navigation. Experimental results demonstrate the feasibility of our approach.

Decentralized Control Design for Welding Mobile Manipulator

  • Phan, Tan-Tung;Chung, Tan-Lam;Ngo, Manh-Dung;Kim, Hak-Kyeong;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.756-767
    • /
    • 2005
  • This paper presents a decentralized motion control method of welding mobile manipulators which use for welding in many industrial fields. Major requirements of welding robots are accuracy, robust, and reliability so that they can substitute for the welders in hazardous and worse environment. To do this, the manipulator has to take the torch tracking along a welding trajectory with a constant velocity and a constant heading angle, and the mobile-platform has to move to avoid the singularities of the manipulator. In this paper, we develop a kinematic model of the mobile-platform and the manipulator as two separate subsystems. With the idea that the manipulator can avoid the singularities by keeping its initial configuration in the welding process, the redundancy problem of system is solved by introducing the platform mobility to realize this idea. Two controllers for the mobile-platform and the manipulator were designed, respectively, and the relationships between two controllers are the velocities of two subsystems. Control laws are obtained based on the Lyapunov function to ensure the asymptotical stability of the system. The simulation and experimental results show the effectiveness of the proposed controllers.

The Evaluation of Performance of 2-Axis Polishing Robot Attached to Machining Center (머시닝센터 장착형 2축 연마 로봇의 성능평가)

  • 박준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.411-416
    • /
    • 2000
  • Cutting process has been automated by progress of CNC and CAD/CAM, but polishing process has been depended on only experiential knowledge of expert. To automate the polishing process, a polishing robot with w degrees of freedom which is attached to a machining center with 3 degrees of freedom has been developed. This automatic polishing robot is able to keep the polishing tool normal on the curved surface of die to improve a performance of polishing. Polishing task for a curved surface die demands repetitive operation and high precision, but conventional control algorithm can not cope with the problem of disturbance such as a change of load. In this research, a new sliding mode control algorithm is applied to the robot. The signal compression method is used to identify polishing robot system. to obtain an effect of 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 degrees of freedom motion, a synchronization between the machining center and polishing robot is accomplished by using M code of machining center. And also a trajectory for polishing the curved surface die by 5 axes machining center is divided into data of two types for 3 axes machining center and 2 axes polishing robot. To evaluate polishing performance of the robot. various experiments are carried out.

  • PDF