• Title/Summary/Keyword: Motion time

Search Result 5,245, Processing Time 0.033 seconds

Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime (Lock-in 영역에서 원형실린더의 와류유기진동 전산해석)

  • Lee, Sungsu;Hwang, Kyu-Kwan;Son, Hyun-A;Jung, Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • The slender structures such as high rise building or marine riser are highly susceptible to dynamic force exerted by fluid-structure interactions among which vortex-induced vibration(VIV) is the main cause of dynamic unstability of the structural system. If VIV occurs in natural frequency regime of the structure, fatigue failure likely happens by so-called lock-in phenomenon. This study presents the numerical analysis of dynamic behavior of both structure and fluid in the lock-in regimes and investigates the subjacent phenomena to hold the resonance frequency in spite of the change of flow condition. Unsteady and laminar flow was considered for a two-dimensional circular cylinder which was assumed to move freely in 1 degree of freedom in the direction orthogonal to the uniform inflow. Fluid-structure interaction was implemented by solving both unsteady flow and dynamic motion of the structure sequentially in each time step where the fluid domain was remeshed considering the movement of the body. The results show reasonable agreements with previous studies and reveal characteristic features of the lock-in phenomena. Not only the lift force but also drag force are drastically increasing during the lock-in regime, the vertical displacement of the cylinder reaches up to 20% of the diameter of the cylinder. The correlation analysis between lift and vertical displacement clearly show the dramatic change of the phase difference from in-phase to out-of-phase when the cylinder experiences lock-in. From the results, it can be postulated that the change of phase difference and flow condition is responsible for the resonating behavior of the structure during lock-in.

Explicit Transient Simulation of SH-waves Using a Spectral Element Method (스펙트럴 요소법을 이용한 SH파 전파의 외연적 시간이력해석)

  • Youn, Seungwook;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-95
    • /
    • 2018
  • This paper introduces a new explicit spectral element method for the simulation of SH-waves in semi-infinite domains. To simulate the wave motion in unbounded domains, it is necessary to reduce the infinite extent to a finite computational domain of interest. To prevent the wave reflection from the trunctated boundaries, perfectly matched layer(PML) wave-absorbing boundary is introduced. The forward problem for simulating SH-waves in PML-truncated domains can be formulated as second-order PDEs. The second-order semi-discrete form of the governing PDEs is constructed by using a mixed spectral elements with Legendre-gauss-Lobatto quadrature method, which results in a diagonalized mass matrix. Then the second-order semi-discrete form is transformed to a first-order, whose solutions are calculated by the fourth-order Runge-Kutta method. Numerical examples showed that solutions of SH-wave in the two-dimensional analysis domain resulted in stable and accurate, and reflections from truncated boundaries could be reduced by using PML boundaries. Elastic wave propagation analysis using explicit time integration method may be apt for solving larger domain problems such as three-dimensional elastic wave problem more efficiently.

The Detection of Magnetic Properties in Blood and Nanoparticles using Spin Valve Biosensor (스핀밸브 바이오 센서를 이용한 혈액과 나노입자의 자성특성 검출)

  • Park, Sang-Hyun;Soh, Kwang-Sup;Ahn, Myung-Cheon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • In this study, a high sensitive giant magnetoresistance-spin valve (GMR-SV) bio-sensing device with high linearity and very low hysteresis was fabricated by photolithography and ion beam deposition sputtering system. Detection of the Fe-hemoglobin inside in a red blood and magnetic nanoparticles using the GMR-SV bio-sensing device was investigated. Here a human's red blood includes hemoglobin, and the nanoparticles are the Co-ferrite magnetic particles coated with a shell of amorphous silica which the average size of the water-soluble bare cobalt nanoparticles was about 9 nm with total size of about 50 nm. When 1 mA sensing current was applied to the current electrode in the patterned active GMR-SV devices with areas of $5x10{\mu}m^2 $ and $2x6{\mu}m^2 $, the output signals of the GMRSV sensor were about 100 mV and 14 mV, respectively. In addition, the maximum sensitivity of the fabricated GMR-SV sensor was about $0.1{\sim}0.8%/Oe$. The magnitude of output voltage signals was obtained from four-probe magnetoresistive measured system, and the picture of real-time motion images was monitored by an optical microscope. Even one drop of human blood and nanopartices in distilled water were found to be enough for detecting and analyzing their signals clearly.

Kinematic analysis of skill between flexed and extended type of knee during Jigeo-Cha-Gi in Taekwon-Do (태권도 찍어차기의 무릎편 유형과 구부린 유형의 운동학적 비교분석)

  • Kim, Dong-Kyu;Ryew, Che-Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.25-42
    • /
    • 2005
  • The study was to investigate kinematic difference between flexed and extended type of knee during Jigeo-Cha-Gi in Taekwon-Do. For this subjects participated were consisted of weights of fin (1), bantam (1) and welter class(1) of male 3 national representative level skilled in two type(flexed and extended type) of Jigeo-Cha-Gi. 3D cinematography analysis was performed for motion analysis and Kwon 3D ver. 3.1) was used for 3D coordinates & analysis variables calculation. In Temporal variable there was no significant difference statistically in all phases & total elapsed time between flexed and extended type, but flexed type was delayed more 0.016 sec than extended type. In displacement of COG there was significant difference in level of p<.05 showing longer mean 6.13 cm in case of flexed type than extended type in displacement of COG during all phase and too significant difference in level of p<.01 showing longer mean 4.4 cm in case of flexed type than extended type in displacement of COG in follow through phase. In velocity of COG there was significant difference in level of p<.001 showing higher mean 15.53cm/s in case of flexed type than extended type in velocity of COG(Y direction) during targeting phase and peak velocity(Y) was more fast 8.74 cm/s in extended type than flexed type. In velocity of leading leg in forward direction(Y) there was significant difference in level of p<.05 showing higher thigh mean value in case of flexed type than extended type but showing higher foot mean value in extended type at level of p<.001 than flexed type in velocity of COG(Y direction). In velocity of leading leg in vertical direction(Z) there was no significant difference in the second & third phase in case of vertical velocity level, but momentum transferred efficiently form proximal to distal endpoint. In front-back & right-left orientation angle of trunk there was possibility of more stable Jigeo-Cha-Gi in extended than flexed type by decreasing in right-left orientation angle of trunk. In relative angle of lower leg(hip, knee, ankle) there was significant difference in level of p<.001 showing longer mean 32.74 deg. in case of flexed type than extended type in hip joint during the second phase but maintained insufficient extended knee of mean 168 deg. in targeting phase.

Observation of External Injury and Morphological Movement for Analysis of Recovery Possibility after Storage of the Juvenile Sea Cucumber, Apostichopus japonicus (돌기해삼(Apostichopus japonicus)의 보관 후 회복 가능성 파악을 위한 외상 및 형태학적 변화의 관찰)

  • KIM, Tae-Ik;SON, Maeng-Hyun;CHO, Jae-Kwon;JIN, Young-Guk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1006-1013
    • /
    • 2016
  • The observed external injury, movement and survival rate according to storage and recovery of the juvenile sea cucumber, Apostichopus japonicus(wet weight $1.0{\pm}0.2g$). The investigated application possibility of external injury(grade I~IV) and movement variation(buccal tentacle, motion, obversion, movement) for estimate of survival rate. The survival rate was observed through the recovery after storage of the sea cucumber in various water temperature(10, 15, 20, $25^{\circ}C$) and hours(3, 6, 12, 24 hour). Grade of external injury lower in the 24 hour experiment group of $20^{\circ}C$ water temperature and 12 hour experiment group of $25^{\circ}C$ water temperature. Buccal tentacle and movement strong related survival rate and external injury. In the case of $20^{\circ}C$ water temperature, survival rate was observed decrease 24 hours experiment. $25^{\circ}C$ water temperature was high to 6 hours but 12 hours experiment group observed decrease of the survival rate. The lethal time(LT10) of the juvenile sea cucumber was 15.73 hours($20^{\circ}C$) and 5.57 hours($25^{\circ}C$). The results of this study provided various measurement method of survival rate according to transportation of the juvenile sea cucumber for release.

Implementation of Gait Analysis System Based on Inertial Sensors (관성센서 기반 보행 분석 시스템 구현)

  • Cho, J.S.;Kang, S.I.;Lee, K.H.;Jang, S.H.;Kim, I.Y.;Lee, J.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In this paper, we present an inertial sensor-based gait analysis system to measure and analyze lower-limb movements. We developed an integral AHRS(Attitude Heading Reference System) using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE(Root Mean Square Error) of 1.08 and 1.72 degree in yaw and pitch angle. In order to evaluate the performance of our the gait analysis system, we compared the joint angle for the hip, knee and ankle with those provided by Vicon system. The result shows that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limb or gait analysis during the post-stroke recovery.

  • PDF

Usability Testing of Digital Pressure Bio-feedback for Spinal Rehabilitation Exercise (척추재활운동을 위한 디지털 압력바이오피드백 장치의 사용성 평가)

  • Kim, Tea-Ho;Oh, Do-Bong;Kim, Da-Yeon
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.119-126
    • /
    • 2017
  • In the clinical setting, the pressure bio-feedback device is used for the spinal rehabilitation of patients with back pain, but it has several disadvantages. The purpose of this study was to develop a digitalized pressure biofeedback system that provides precise exercise method and posture in real time during the spinal rehabilitation exercise by sensing and monitoring body movements and balance of users and providing biofeedback to users. After that, the usability testing for a digitalized pressure biofeedback system will be conducted to identify problems such as safety, performance, operability, and satisfaction, and suggest improvement directions. A total of 33 subjects were participated in the usability testing. The experts group and the users group evaluated the developed digitalized pressure biofeedback system on a scale of 5 points after using the equipment. In the user group, safety was 3.59, operability was 4.38, satisfaction was 4.49. In the expert group, safety was 2.86, operability was 3.91, and performance was 4.28. Based on the usability evaluation, if the problems of stability of the cradle for tablet PC, air injection, screen display, etc. are solved, it becomes a exercise device capable of accurately exercising and evaluating the function of the spine by checking its own motion state while the spinal stabilization exercise.

Fixed Pattern Noise Reduction in Infrared Videos Based on Joint Correction of Gain and Offset (적외선 비디오에서 Gain과 Offset 결합 보정을 통한 고정패턴잡음 제거기법)

  • Kim, Seong-Min;Bae, Yoon-Sung;Jang, Jae-Ho;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.2
    • /
    • pp.35-44
    • /
    • 2012
  • Most recent infrared (IR) sensors have a focal-plane array (FPA) structure. Spatial non-uniformity of a FPA structure, however, introduces unwanted fixed pattern noise (FPN) to images. This non-uniformity correction (NUC) of a FPA can be categorized into target-based and scene-based approaches. In a target-based approach, FPN can be separated by using a uniform target such as a black body. Since the detector response randomly drifts along the time axis, however, several scene-based algorithms on the basis of a video sequence have been proposed. Among those algorithms, the state-of-the-art one based on Kalman filter uses one-directional warping for motion compensation and only compensates for offset non-uniformity of IR camera detectors. The system model using one-directional warping cannot correct the boundary region where a new scene is being introduced in the next video frame. Furthermore, offset-only correction approaches may not completely remove the FPN in images if it is considerably affected by gain non-uniformity. Therefore, for FPN reduction in IR videos, we propose a joint correction algorithm of gain and offset based on bi-directional warping. Experiment results using simulated and real IR videos show that the proposed scheme can provide better performance compared with the state-of-the art in FPN reduction.

Development of Driver's Emotion and Attention Recognition System using Multi-modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 운전자의 감정 및 주의력 인식 기술 개발)

  • Han, Cheol-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.754-761
    • /
    • 2008
  • As the automobile industry and technologies are developed, driver's tend to more concern about service matters than mechanical matters. For this reason, interests about recognition of human knowledge and emotion to make safe and convenient driving environment for driver are increasing more and more. recognition of human knowledge and emotion are emotion engineering technology which has been studied since the late 1980s to provide people with human-friendly services. Emotion engineering technology analyzes people's emotion through their faces, voices and gestures, so if we use this technology for automobile, we can supply drivels with various kinds of service for each driver's situation and help them drive safely. Furthermore, we can prevent accidents which are caused by careless driving or dozing off while driving by recognizing driver's gestures. the purpose of this paper is to develop a system which can recognize states of driver's emotion and attention for safe driving. First of all, we detect a signals of driver's emotion by using bio-motion signals, sleepiness and attention, and then we build several types of databases. by analyzing this databases, we find some special features about drivers' emotion, sleepiness and attention, and fuse the results through Multi-Modal method so that it is possible to develop the system.

An Optimization Approach for Localization of an Indoor Mobile Robot (최적화 기법을 사용한 실내 이동 로봇의 위치 인식)

  • Han, Jun Hee;Ko, Nak Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.253-258
    • /
    • 2016
  • This paper proposes a method that utilizes optimization approach for localization of an indoor mobile robot. Bayesian filters which have been widely used for localization of a mobile robot use many control parameters to take the uncertainties in measurement and environment into account. The estimation performance depends on the selection of these parameter values. Also, the performance of the Bayesian filters deteriorate as the non-linearity of the motion and measurement increases. On the other hand, the optimization approach uses fewer control parameters and is less influenced by the non-linearity than the Bayesian methods. This paper compares the localization performance of the proposed method with the performance of the extended Kalman filter to verify the feasibility of the proposed method. Measurements of ranges from beacons of ultrasonic satellite to the robot are used for localization. Mahalanobis distance is used for detection and rejection of outlier in the measurements. The optimization method sets performance index as a function of the measured range values, and finds the optimized estimation of the location through iteration. The method can improve the localization performance and reduce the computation time in corporation with Bayesian filter which provides proper initial location for the iteration.