• Title/Summary/Keyword: Motion segmentation

Search Result 203, Processing Time 0.029 seconds

Object Detection using Multiple Color Normalization and Moving Color Information (다중색상정규화와 움직임 색상정보를 이용한 물체검출)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.12B no.7 s.103
    • /
    • pp.721-728
    • /
    • 2005
  • This paper suggests effective object detection system for moving objects with specified color and motion information. The proposed detection system includes the object extraction and definition process which uses MCN(Multiple Color Normalization) and MCWUPC(Moving Color Weighted Unmatched Pixel Count) computation to decide the existence of moving object and object segmentation technique using signature information is used to exactly extract the objects with high probability. Finally, real time detection system is implemented to verify the effectiveness of the technique and experiments show that the success rate of object tracking is more than $89\%$ of total 120 image frames.

Hand Gesture Recognition using Optical Flow Field Segmentation and Boundary Complexity Comparison based on Hidden Markov Models

  • Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.504-516
    • /
    • 2011
  • In this paper, we will present a method to detect human hand and recognize hand gesture. For detecting the hand region, we use the feature of human skin color and hand feature (with boundary complexity) to detect the hand region from the input image; and use algorithm of optical flow to track the hand movement. Hand gesture recognition is composed of two parts: 1. Posture recognition and 2. Motion recognition, for describing the hand posture feature, we employ the Fourier descriptor method because it's rotation invariant. And we employ PCA method to extract the feature among gesture frames sequences. The HMM method will finally be used to recognize these feature to make a final decision of a hand gesture. Through the experiment, we can see that our proposed method can achieve 99% recognition rate at environment with simple background and no face region together, and reduce to 89.5% at the environment with complex background and with face region. These results can illustrate that the proposed algorithm can be applied as a production.

Fast information extraction algorithm for object-based MPEG-4 application from MPEG-2 bit-streamaper (MPEG-2 비트열로부터 객체 기반 MPEG-4 응용을 위한 고속 정보 추출 알고리즘)

  • 양종호;원치선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2109-2119
    • /
    • 2001
  • In this paper, a fast information extraction algorithm for object-based MPEG-4 application from MPEG-2 bit-steam is proposed. For object-based MPEG-4 conversion, we need to extract such information as object-image, shape-image, macro-block motion vector, and header information from MPEG-2 bit-stream. If we use the extracted information, fast conversion for object-based MPEG-4 is possible. The proposed object extraction algorithm has two important steps, namely the motion vectors extraction from MPEG-2 bit-stream and the watershed algorithm. The algorithm extracts objects using user\`s assistance in the intra frame and tracks then in the following inter frames. If we have an unsatisfactory result for a fast moving object, the user can intervene to correct the segmentation. The proposed algorithm consist of two steps, which are intra frame object extracts processing and inter frame tracking processing. Object extracting process is the step in which user extracts a semantic object directly by using the block classification and watersheds. Object tacking process is the step of the following the object in the subsequent frames. It is based on the boundary fitting method using motion vector, object-mask, and modified watersheds. Experimental results show that the proposed method can achieve a fast conversion from the MPEG-2 bit-stream to the object-based MPEG-4 input.

  • PDF

A Study on the Generation of Ultrasonic Binary Image for Image Segmentation (Image segmentation을 위한 초음파 이진 영상 생성에 관한 연구)

  • Choe, Heung-Ho;Yuk, In-Su
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.571-575
    • /
    • 1998
  • One of the most significant features of diagnostic ultrasonic instruments is to provide real time information of the soft tissues movements. Echocardiogram has been widely used for diagnosis of heart diseases since it is able to show real time images of heart valves and walls. However, the currently used ultrasonic images are deteriorated due to presence of speckle noises and image dropout. Therefore, it is very important to develop a new technique which can enhance ultrasonic images. In this study, a technique which extracts enhanced binary images in echocardiograms was proposed. For this purpose, a digital moving image file was made from analog echocardiogram, then it was stored as 8-bit gray-level for each frame. For an efficient image processing, the region containing the heat septum and tricuspid valve was selected as the region of interest(ROI). Image enhancement filters and morphology filters were used to reduce speckle noises in the images. The proposed procedure in this paper resulted in binary images with enhanced contour compared to those form the conventional threshold technique and original image processing technique which can be further implemented for the quantitative analysis of the left ventricular wall motion in echocardiogram by easy detection of the heart wall contours.

  • PDF

Freeway Crash Frequency Model Development Based on the Road Section Segmentation by Using Vehicle Speeds (차량 속도를 이용한 도로 구간분할에 따른 고속도로 사고빈도 모형 개발 연구)

  • Hwang, Gyeong-Seong;Choe, Jae-Seong;Kim, Sang-Yeop;Heo, Tae-Yeong;Jo, Won-Beom;Kim, Yong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.2
    • /
    • pp.151-159
    • /
    • 2010
  • This paper presents a research result that was performed to develop a more accurate freeway crash prediction model than existing models. While the existing crash models only focus on developing crash relationships associated with highway geometric conditions found on a short section of a crash site, this research applies a different approach considering the upstream highway geometric conditions as well. Theoretically, crashes occur while motorists are in motion, and particularly at freeways vehicle speed at one specific point is very sensitive to upstream geometric conditions. Therefore, this is a reasonable approach. To form the analysis data base, this research gathers the geometric conditions of the West Seaside Freeway 269.3 km and six years crash data ranging 2003-2008 for these freeway sections. As a result, it is found that crashes fit well into Negative Binomial Distribution, and, based on the developed model, total number of crashes is inversely proportional to highway curve length and radius. Contrarily, crash occurrences are proportional to tangent length. This result is different from existing crash study results, and it seems to be resulted from this research assumption that a crash is influenced greatly by upstream geometric conditions. Also, this research provides the expected effects on crash occurrences of the length of downgrade sections, speed camera placements, and the on- and off- ramp presences. It is expected that this research result is useful for doing more reasonable highway designs and safety audit analysis, and applying the same research approach to national roads and other major roads in urban areas is recommended.

A Hierarchical Semantic Video Object Tracking Algorithm Using Watershed Algorithm (Watershed 알고리즘을 사용한 계층적 이동체 추적 알고리즘)

  • 이재연;박현상;나종범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1986-1994
    • /
    • 1999
  • In this paper, a semi-automatic approach is adopted to extract a semantic object from real-world video sequences human-aided segmentation for the first frame and automatic tracking for the remaining frames. The proposed algorithm has a hierarchical structure using watershed algorithm. Each hierarchy consists of 3 basic steps: First, seeds are extracted from the simplified current frame. Second, region growing bv a modified watershed algorithm is performed to get over-segmented regions. Finally, the segmented regions are classified into 3 categories, i.e., inside, outside or uncertain regions according to region probability values, which are acquired by the probability map calculated from an estimated motion-vector field. Then, for the remaining uncertain regions, the above 3 steps are repeated at lower hierarchies with less simplified frames until every region is classified into a certain region. The proposed algorithm provides prospective results in studio-quality sequences such as 'Claire', 'Miss America', 'Akiyo', and 'Mother and daughter'.

  • PDF

Integrated 3D Skin Color Model for Robust Skin Color Detection of Various Races (강건한 다인종 얼굴 검출을 위한 통합 3D 피부색 모델)

  • Park, Gyeong-Mi;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.1-12
    • /
    • 2009
  • The correct detection of skin color is an important preliminary process in fields of face detection and human motion analysis. It is generally performed by three steps: transforming the pixel color to a non-RGB color space, dropping the illuminance component of skin color, and classifying the pixels by the skin color distribution model. Skin detection depends on by various factors such as color space, presence of the illumination, skin modeling method. In this paper we propose a 3d skin color model that can segment pixels with several ethnic skin color from images with various illumination condition and complicated backgrounds. This proposed skin color model are formed with each components(Y, Cb, Cr) which transform pixel color to YCbCr color space. In order to segment the skin color of several ethnic groups together, we first create the skin color model of each ethnic group, and then merge the skin color model using its skin color probability. Further, proposed model makes several steps of skin color areas that can help to classify proper skin color areas using small training data.

Development of a Ubiquitous Vision System for Location-awareness of Multiple Targets by a Matching Technique for the Identity of a Target;a New Approach

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hag-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.68-73
    • /
    • 2005
  • Various techniques have been proposed for detection and tracking of targets in order to develop a real-world computer vision system, e.g., visual surveillance systems, intelligent transport systems (ITSs), and so forth. Especially, the idea of distributed vision system is required to realize these techniques in a wide-spread area. In this paper, we develop a ubiquitous vision system for location-awareness of multiple targets. Here, each vision sensor that the system is composed of can perform exact segmentation for a target by color and motion information, and visual tracking for multiple targets in real-time. We construct the ubiquitous vision system as the multiagent system by regarding each vision sensor as the agent (the vision agent). Therefore, we solve matching problem for the identity of a target as handover by protocol-based approach. We propose the identified contract net (ICN) protocol for the approach. The ICN protocol not only is independent of the number of vision agents but also doesn't need calibration between vision agents. Therefore, the ICN protocol raises speed, scalability, and modularity of the system. We adapt the ICN protocol in our ubiquitous vision system that we construct in order to make an experiment. Our ubiquitous vision system shows us reliable results and the ICN protocol is successfully operated through several experiments.

  • PDF

Spatiotemporal Saliency-Based Video Summarization on a Smartphone (스마트폰에서의 시공간적 중요도 기반의 비디오 요약)

  • Lee, Won Beom;Williem, Williem;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.185-195
    • /
    • 2013
  • In this paper, we propose a video summarization technique on a smartphone, based on spatiotemporal saliency. The proposed technique detects scene changes by computing the difference of the color histogram, which is robust to camera and object motion. Then the similarity between adjacent frames, face region, and frame saliency are computed to analyze the spatiotemporal saliency in a video clip. Over-segmented hierarchical tree is created using scene changes and is updated iteratively using mergence and maintenance energies computed during the analysis procedure. In the updated hierarchical tree, segmented frames are extracted by applying a greedy algorithm on the node with high saliency when it satisfies the reduction ratio and the minimum interval requested by the user. Experimental result shows that the proposed method summaries a 2 minute-length video in about 10 seconds on a commercial smartphone. The summarization quality is superior to the commercial video editing software, Muvee.

Lip Reading Method Using CNN for Utterance Period Detection (발화구간 검출을 위해 학습된 CNN 기반 입 모양 인식 방법)

  • Kim, Yong-Ki;Lim, Jong Gwan;Kim, Mi-Hye
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.233-243
    • /
    • 2016
  • Due to speech recognition problems in noisy environment, Audio Visual Speech Recognition (AVSR) system, which combines speech information and visual information, has been proposed since the mid-1990s,. and lip reading have played significant role in the AVSR System. This study aims to enhance recognition rate of utterance word using only lip shape detection for efficient AVSR system. After preprocessing for lip region detection, Convolution Neural Network (CNN) techniques are applied for utterance period detection and lip shape feature vector extraction, and Hidden Markov Models (HMMs) are then used for the recognition. As a result, the utterance period detection results show 91% of success rates, which are higher performance than general threshold methods. In the lip reading recognition, while user-dependent experiment records 88.5%, user-independent experiment shows 80.2% of recognition rates, which are improved results compared to the previous studies.