• 제목/요약/키워드: Motion platform

검색결과 572건 처리시간 0.027초

Relationship between Hallux Valgus Severity and 3D Ground Reaction Force in Individuals with Hallux Valgus Deformity during Gait

  • Kim, Yong-Wook
    • 대한물리의학회지
    • /
    • 제16권3호
    • /
    • pp.21-27
    • /
    • 2021
  • PURPOSE: This study examined the relationship between the severity of a hallux valgus (HV) deformity and the kinetic three-dimensional ground reaction force (GRF) through a motion analysis system with force platforms in individuals with a HV deformity during normal speed walking. METHODS: The participants were 36 adults with a HV deformity. The participants were asked to walk on a 6 m walkway with 40 infrared reflective markers attached to their pelvic and lower extremities. A camera capture system and two force platforms were used to collect kinetic data during gait. A Vicon Nexus and Visual3D motion analysis software were used to calculate the kinetic GRF data. RESULTS: This research showed that the anterior maximal force that occurred in the terminal stance phase during gait had a negative correlation with the HV angle (r = -.762, p < .01). In addition, the HV angle showed a low negative correlation with the second vertical maximal force (r = .346, p < .05) and a moderate positive correlation with the late medial maximal force (r = .641, p < .01). CONCLUSION: A more severe HV deformity results in greater abnormal translation of the plantar pressure and a significantly reduced pressure force under the first metatarsophalangeal joint.

Analysis of the fluid-solid-thermal coupling of a pressurizer surge line under ocean conditions

  • Yu, Hang;Zhao, Xinwen;Fu, Shengwei;Zhu, Kang
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3732-3744
    • /
    • 2022
  • To investigate the effects of ocean conditions on the thermal stress and deformation caused by thermal stratification of a pressurizer surge line in a floating nuclear power plant (FNPP), the finite element simulation platform ANSYS Workbench is utilized to conduct the fluid-solid-thermal coupling transient analysis of the surge line under normal "wave-out" condition (no motion) and under ocean conditions (rolling and pitching), generating the transient response characteristics of temperature distribution, thermal stress and thermal deformation inside the surge line. By comparing the calculated results for the three motion conditions, it is found that ocean conditions can significantly improve the thermal stratification phenomenon within the surge line, but may also result in periodic oscillations in the temperature, thermal stress, and thermal deformation of the surge line. Parts of the surge line that are more susceptible to thermal fatigue damage or failure are determined. According to calculation results, the improvements are recommended for pipeline structure to reduce the effects of thermal oscillation caused by ocean conditions. The analysis method used in this study is beneficial for designing and optimizing the pipeline structure of a floating nuclear power plant, as well as for increasing its safety.

The Kinematic Factors of Physical Motions During Air Pistol Shooting

  • Kim, Min-Soo
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.197-204
    • /
    • 2016
  • Objective: The purpose of this study was to analyze the kinematic factors of motion during air pistol shooting. Method: This study aimed to investigate changes in forces during movement and determine the factors that affect changes in force during the first, middle, and last periods of shooting an air pistol. Two ground reaction force systems (force platform), SCATT (a shooting training system), and EMG (electromyogram) to measure the action potentials in the muscles of the upper body were used in this study. Four university air pistol players (age: 19.75 years, height: 175.50 cm, body mass: $69.55{\pm}11.50kg$, career length: $6.25{\pm}6years$) who are training to progress to a higher rank were enrolled. Results: In terms of the actual shooting results, the mean score in the middle section was $42.48{\pm}1.74$ points, higher than those in the first and the last periods when using SCATT. The gunpoint moved 13.48 mm more vertically than horizontally in the target trajectory. With respect to action potentials of muscles measured using EMG, the highest action potentials during the aiming-shooting segments, in order higher to lower, were seen in the trapezius (intermediate region), trapezius (superior region), deltoid (lateral), and triceps brachii (long head). The action potentials of biceps brachii and brachioradialis turned out to be high during grasping motion, which is a preparatory stage. During the final segment, muscle fatigue appeared in the deltoid (lateral), biceps brachii (long head), brachioradialis, and trapezius (intermediate region). In terms of the ground reaction force, during the first period of shooting, there was a major change in the overall direction (left-right $F_x$, forward-backward $F_y$, vertical $F_z$) of the center of the mass. Conclusion: The development and application of a training program focusing on muscle groups with higher muscle fatigue is required for players to progress to a higher rank. Furthermore, players can improve their records in the first period if they take part in a game after warming up sufficiently before shooting in order to heighten muscle action potentials, and are expected to maintain a consistent shooting motion continuously by restoring psychological stability.

Simulation and Experimental Studies of Real-Time Motion Compensation Using an Articulated Robotic Manipulator System

  • Lee, Minsik;Cho, Min-Seok;Lee, Hoyeon;Chung, Hyekyun;Cho, Byungchul
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.171-180
    • /
    • 2017
  • The purpose of this study is to install a system that compensated for the respiration motion using an articulated robotic manipulator couch which enables a wide range of motions that a Stewart platform cannot provide and to evaluate the performance of various prediction algorithms including proposed algorithm. For that purpose, we built a miniature couch tracking system comprising an articulated robotic manipulator, 3D optical tracking system, a phantom that mimicked respiratory motion, and control software. We performed simulations and experiments using respiratory data of 12 patients to investigate the feasibility of the system and various prediction algorithms, namely linear extrapolation (LE) and double exponential smoothing (ES2) with averaging methods. We confirmed that prediction algorithms worked well during simulation and experiment, with the ES2-averaging algorithm showing the best results. The simulation study showed 43% average and 49% maximum improvement ratios with the ES2-averaging algorithm, and the experimental study with the $QUASAR^{TM}$ phantom showed 51% average and 56% maximum improvement ratios with this algorithm. Our results suggest that the articulated robotic manipulator couch system with the ES2-averaging prediction algorithm can be widely used in the field of radiation therapy, providing a highly efficient and utilizable technology that can enhance the therapeutic effect and improve safety through a noninvasive approach.

초대형 반잠수식 해양 구조물의 최적 감쇠 모델에 대한 고찰 (Study on Optimal Damping Model of Very Large Offshore Semi-submersible Structure)

  • 이혜빈;배윤혁;김동은;박세완;김경환;홍기용
    • 한국해양공학회지
    • /
    • 제32권1호
    • /
    • pp.1-8
    • /
    • 2018
  • In order to analyze the response of the offshore structure numerically, the linear potential theory is generally applied for simplicity, and only the radiation damping is considered among various damping forces. Therefore, the results of a numerical simulation can be different from the motion of the structure in a real environment. To reduce the differences between the simulation results and experimental results, the viscous damping, which affects the motion of the structure, is also taken into account. The appropriate damping model is essential for the numerical simulation in order to obtain precise responses of the offshore structure. In this study, various damping models such as linear or quadratic damping and the nonlinear drag force from numerous slender bodies were used to simulate the free decay motion of the platform, and its characteristics were confirmed. The optimized damping model was found by comparing the simulation results to the experimental results. The hydrodynamic forces and wave exciting forces of the structure were obtained using WAMIT, and the free decay test was simulated using OrcaFlex. A free decay test of the scale model was performed by KRISO.

The Effect of Hinged Ankle-Foot Orthosis on Walking Function in Children With Spastic Diplegic Cerebral Palsy: A Cross-Sectional Pilot Study

  • Kang, Jeong-Hyeon;Kim, Chang-Yong;Ohn, Jin-Moo;Kim, Hyeong-Dong
    • The Journal of Korean Physical Therapy
    • /
    • 제27권1호
    • /
    • pp.43-49
    • /
    • 2015
  • Purpose: The aim of the current study was to examine the effects of hinged ankle-foot orthosis (HAFO) on walking function in children with spastic diplegic cerebral palsy (CP). Methods: Thirty-two children (mean age: $6.79{\pm}0.35years$, age range: 5-7 years) who were diagnosed with spastic diplegic cerebral palsy participated in the study. Each subject typically walked through 10 meters of a gait platform with markers on the subject's proper body segments and underwent 3-D motion analysis system with and without hinged ankle-foot orthosis. The HAFOs were all custom-made for individual CP children and had plantarflexion stop at $0^{\circ}C$ with no dorsiflexion stop. The interventions were conducted over three trials in each group, and measurements were performed on each subject by one examiner in three trials. 3-D motion analysis system was used to measure gait parameters such as walking velocity, cadence, step-length, step-width, stride-length, and double support period in two conditions. Results: The walking velocity, cadence, step-length, and stride-length were significantly greater for the HAFO condition as compared to the no HAFO condition (p<0.05). However, no significant difference in step-width and double support period was observed between two conditions. Conclusion: These findings suggest that using the HAFO during walking would suggest positive evidence for improving the spatiotemporal parameters of gait in children with spastic diplegic cerebral palsy.

박테리아의 주화성에 의한 미세입자의 운동 (Motion of Microbeads Propelled by Bacterial Chemotaxis)

  • 김동욱;김영원;유정열
    • 대한기계학회논문집B
    • /
    • 제34권5호
    • /
    • pp.523-529
    • /
    • 2010
  • Micro actuator의 동력원으로 박테리아 주화성을 기반으로 한 편모박테리아 운동은 널리 연구되고 있다. 본 연구에서는 마이크로입자 추적유속계($\mu$-PTV)를 이용하여 박테리아 주화성에 의해 추진되는 형광입자의 움직임을 분석하였다. 일반적으로 활발한 운동성을 지니고 있는 편모 박테리아 중 Serratia marcescens가 배양액속에서 형광 폴리스티렌 미세입자 표면에 자발적으로 붙게 된다. 박테리아가 부착된 미세입자를 고형화된 화학적 유인물질 L-aspartate가 담겨져 있는 유체 속으로 주입하고, 시간에 따라 입자들이 서서히 L-aspartate가 높은 농도를 가지는 구역으로 이동하는 것을 관찰하였다. 본 연구의 결과로 편모박테리아가 micro actuator의 효율적인 동력원 개발에 적용될 수 있는 가능성을 제시하였다.

다물체계 운동 방정식 선형화를 통한 해상 풍력 발전기 동적 거동의 주파수 영역 해석 방법에 관한 연구 (A Study on the Method for Dynamic Response Analysis in Frequency Domain of an Offshore Wind Turbine by Linearization of Equations of Motion for Multibody)

  • 구남국;노명일;하솔;신현경
    • 한국CDE학회논문집
    • /
    • 제20권1호
    • /
    • pp.84-92
    • /
    • 2015
  • In this study, we describe a method to analysis dynamic behavior of an offshore wind turbine in the frequency domain and expected effects of the method. An offshore wind turbine, which is composed of platform, tower, nacelle, hubs, and blades, can be considered as multibody systems. In general, the dynamic analysis of multibody systems are carried out in the time domain, because the equations of motion derived based on the multibody dynamics are generally nonlinear differential equations. However, analyzing the dynamic behavior in time domain takes longer than in frequency domain. In this study, therefore, we describe how to analysis the system multibody systems in the frequency domain. For the frequency domain analysis, the non-linear differential equations are linearized using total derivative and Taylor series expansions, and then the linearized equations are solved in time domain. This method was applied to analysis of double pendulum system for the verification of its effectiveness, and the equations of motion for the offshore wind turbine was derived with assuming that the wind turbine is rigid multibody systems. Using this method, the dynamic behavior analysis of the offshore wind turbine can be expected to take less time.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제26권4호
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

Computational analysis of three dimensional steel frame structures through different stiffening members

  • Alaskar, Abdulaziz;Wakil, Karzan;Alyousef, Rayed;Jermsittiparsert, Kittisak;Ho, Lanh Si;Alabduljabbar, Hisham;Alrshoudi, Fahed;Mohamed, Abdeliazim Mustafa
    • Steel and Composite Structures
    • /
    • 제35권2호
    • /
    • pp.187-197
    • /
    • 2020
  • Ground motion records are commonly used for fragility curves (FCs) developing utilized in seismic loss estimating analysis for earthquake prone zones. These records could be 'real', say the recorded acceleration time series or 'simulated' records consistent with the regional seismicity and produced by use of alternative simulation methods. This study has focused on fragility curves developing for masonry buildings through computational 'simulated' ground motion records while evaluating the properness of these fragilities compared to the curves generated by the use of 'real' records. Assessing the dynamic responses of structures, nonlinear computational time history analyses through the equivalent single degree of freedom systems have been implemented on OpenSees platform. Accordingly, computational structural analyses of multi-story 3D frame structures with different stiffening members considering soil interaction have been carried out with finite element software according to (1992) Earthquake East-West component. The obtained results have been compared to each frame regarding soil interaction. Conclusion and recommendations with the discuss of obtaining findings are presented.