• Title/Summary/Keyword: Motion monitoring system

Search Result 288, Processing Time 0.028 seconds

Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine

  • Kim, C.M.;Cho, J.R.;Kim, S.R.;Lee, Y.S.
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.333-350
    • /
    • 2017
  • Differing from the fixed-type, the dynamic motion of floating-type offshore wind turbines is very sensitive to wind and wave excitations. Thus, the sensing and monitoring of its motion is important to evaluate the dynamic responses to the external excitation. In this context, a monitoring system for sensing and processing the wind-induced dynamic motion of spar-type floating offshore wind turbine is developed in this study. It is developed by integrating a 1/00 scale model of 2.5MW spar-type floating offshore wind turbine, water basin equipped with the wind generator, sensing and data acquisition systems, real-time CompactRIO controller and monitoring program. The scale model with the upper rotatable blades is installed within the basin by means of three mooring lines, and its translational and rotational motions are detected by 3-axis inclinometer and accelerometers and gyroscope. The detected motion signals are processed using a real-time controller CompactRIO to calculate the acceleration and tilting angle of nacelle and the attitude of floating platform. The developed monitoring system is demonstrated and validated by measuring and evaluating the time histories and trajectories of nacelle and platform motions for three different wind velocities and for eight different fairlead positions.

A Study of Sensing Locations for ECG Monitoring Clothing based on the Skin Change rate (체표 변화에 기반한 심전도 모니터링 의류의 센싱 위치 연구)

  • Cho, Hakyung;Cho, Sang woo
    • Fashion & Textile Research Journal
    • /
    • v.17 no.5
    • /
    • pp.844-853
    • /
    • 2015
  • Recently, according to change of lifestyle and increase of concerning in health, needs of the smart clothing based on the vital sign monitoring have increased. Along with this trend, smart clothing for ECG monitoring has been studied various way as textile electrode, clothing design and so on. Smart clothing for ECG monitoring can become a comfortable system which enables continuous vital sign monitoring in daily use. But, smart clothing for ECG monitoring has a weakness on artifact during motion. One of the motion artifact caused by shifting of the electrode position was affected skin change by motion. The aim of this study was to suggest electrode locations for clothing of ECG monitoring to reduce of motion artifacts. Therefore, change of skin surface during the movement were measured and analyzed in order to find location to minimize motion artifacts in ECG monitoring clothing by 3D motion capture. For the experiment, the subjects consisted of 5 males and 5 females in their 20' with average physique. As a result, the optimal location for ECG monitoring was deducted under the bust line and scapula which have least motion artifact. These locations were abstracted to be least affected by movement in this research.

Movement Monitoring System for Marine Buoy (해상 브이용 움직임 감시 시스템)

  • Oh, Jin Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.311-317
    • /
    • 2014
  • Buoy has different motion characteristics depends on the sea weather situations. The motion characteristics has an impact on antenna, solar power generation system and etc. installed within a buoy. Therefore, it is important to analyse motion characteristics for management and analyse the buoy conditions. This paper's Buoy motion monitoring system uses gyro sensor to detect motions of a light buoy, and the measured data transfers to the PC on the shore using signal processing algorithm. The aim of this research is to develop monitoring and management mechanism of a buoy by applying motion monitoring system. In this paper, the operation characteristic of movement monitoring system is verified through experiment. Further, in this paper, it can apply such as real-time visibility into the status of the buoy or many ocean facility's motion estimation of the future.

Health monitoring of a bridge system using strong motion data

  • Mosalam, K.M.;Arici, Y.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.427-442
    • /
    • 2009
  • In this paper, the acceptability of system identification results for health monitoring of instrumented bridges is addressed. This is conducted by comparing the confidence intervals of identified modal parameters for a bridge in California, namely Truckee I80/Truckee river bridge, with the change of these parameters caused by several damage scenarios. A challenge to the accuracy of the identified modal parameters involves consequences regarding the damage detection and health monitoring, as some of the identified modal information is essentially not useable for acquiring a reliable damage diagnosis of the bridge system. Use of strong motion data has limitations that should not be ignored. The results and conclusions underline these limitations while presenting the opportunities offered by system identification using strong motion data for better understanding and monitoring the health of bridge systems.

Advance Crane Lifting Safety through Real-time Crane Motion Monitoring and Visualization

  • Fang, Yihai;Cho, Yong K.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.321-323
    • /
    • 2015
  • Monitoring crane motion in real time is the first step to identifying and mitigating crane-related hazards on construction sites. However, no accurate and reliable crane motion capturing technique is available to serve this purpose. The objective of this research is to explore a method for real-time crane motion capturing and investigate an approach for assisting hazard detection. To achieve this goal, this research employed various techniques including: 1) a sensor-based method that accurately, reliably, and comprehensively captures crane motions in real-time; 2) computationally efficient algorithms for fusing and processing sensing data (e.g., distance, angle, acceleration) from different types of sensors; 3) an approach that integrates crane motion data with known as-is environment data to detect hazards associated with lifting tasks; and 4) a strategy that effectively presents crane operator with crane motion information and warn them with potential hazards. A prototype system was developed and tested on a real crane in a field environment. The results show that the system is able to continuously and accurately monitor crane motion in real-time.

  • PDF

Development of the Motion Monitoring System of a Ship (선박의 운동 운항환경 모니터링 시스템 개발)

  • Yoon, Hyeon-Kyu;Lee, Gyeong-Joong;Lee, Dong-Kon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • A ship in a sea cruises with rolling, pitching, heaving etc because of environmental causes such as wind and wave. Those motions make crews or passengers feel inconvenience and they feel acceleration changes. Therefore, if lateral and vertical accelerations can be measured at a specific position in a ship, it can be known how discomfortable crews or passengers are. The motion monitoring system developed in this paper consists of measuring and communicating part including five accelerometers and gyro and a main computer which acquires measuring data and calculates motion indices. MSI(Motion Sickness Incidence) and MII(Motion Induced Interrupt) are calculated in real time using measured acceleration and angular rate. The validity of the developed system was confirmed through the real ship test of Hannara which is the school ship of Korea Maritime University.

Development of a Monitoring System Based on the Cooperation of Image and Sensor Information (영상 정보와 센서 정보의 협업에 의한 모니터링시스템 개발)

  • Kwon, Cha-Uk;Cha, Kyung-Ae;Kim, Joo-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.2
    • /
    • pp.46-56
    • /
    • 2010
  • This study proposes a monitoring system by cooperating the image information and the sensor information in a sensor network system. The monitoring system proposed in this study is divided into internal spaces, such as offices and laboratories, and external spaces including other various spaces. In the internal spaces, motions in objects are detected through cameras while some peripherals like lights are controlled by analyzing some temperature, humidity, and illuminance data detected by sensor nodes. In the external spaces, it is to watch certain intruders to the internal spaces through the interested region for exceptional time by installing cameras, motion detectors, and body detectors in such interested regions. In the results of the test that was applied to a practically limited environment by implementing some interfaces for the proposed system, it was considered that it is possible to watch surroundings effectively using the image information obtained from cameras and sensor information acquisited from sensor nodes.

MultiFormat motion picture storage subsystem using DirectShow Filters for a Mutichannel Visual Monitoring System (다채널 영상 감시 시스템을 위한 다중 포맷 동영상 저장 DirectShow Filter설계 및 구현)

  • 정연권;하상석;정선태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.113-116
    • /
    • 2002
  • Windows provides Directshow for efficient multimedia streaming processings such as multimedia capture, storage, display and etc. Presently, many motion picture codecs and audio codecs are made to be used in Directshow framework and Windows also supports many codecs (MPEG4, H,263, WMV, WMA, ASF, etc.) in addition to a lot of useful tools for multimedia streaming processing. Therefore, Directshow can be effectively utilized for developing windows-based multimedia streaming applications such as visual monitoring systems which needs to store real-time video data for later retrieval. In this paper, we present our efforts for developing a Directshow Filter System supporting storage of motion pictures in various motion picture codecs. Our Directshow Filter system also provides an additional functionality of motion detection.

  • PDF

Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device (생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Kim, Seong-Hoo;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.

Monitoring System for patients with Alzheimer's disease Using Ubiquitous Technology (유비쿼터스 기술을 이용한 알츠하이머 환자 관리시스템 설계)

  • Ko, Dae-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.4
    • /
    • pp.366-371
    • /
    • 2008
  • The IT communication technology including sensors, RFlD, wire/wireless communication, DBMS and motion picture transmission can be applied to industry and medical fields. In this paper, patient monitoring system which composed of excrements sensing, remind supporting and web-remote monitoring system has been designed and implemented. It has been shown that excrements sensing system had capabilities of monitoring a maximum of 64 patients, remind support system can be used for helping memory of the patients with Alzheimer's disease, and web remote motion picture monitoring system can monitor patients over the internet with 1 to 15 frames/sec.

  • PDF