• Title/Summary/Keyword: Motion errors

Search Result 627, Processing Time 0.024 seconds

Estimating Cumulative Distribution Functions with Maximum Likelihood to Sample Data Sets of a Sea Floater Model (해상 부유체 모델의 표본 데이터에 대해서 최대우도를 갖는 누적분포함수 추정)

  • Yim, Jeong-Bin;Yang, Won-Jae
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.453-461
    • /
    • 2013
  • This paper describes evaluation procedures and experimental results for the estimation of Cumulative Distribution Functions (CDF) giving best-fit to the sample data in the Probability based risk Evaluation Techniques (PET) which is to assess the risks of a small-sized sea floater. The CDF in the PET is to provide the reference values of risk acceptance criteria which are to evaluate the risk level of the floater and, it can be estimated from sample data sets of motion response functions such as Roll, Pitch and Heave in the floater model. Using Maximum Likelihood Estimates and with the eight kinds of regulated distribution functions, the evaluation tests for the CDF having maximum likelihood to the sample data are carried out in this work. Throughout goodness-of-fit tests to the distribution functions, it is shown that the Beta distribution is best-fit to the Roll and Pitch sample data with smallest averaged probability errors $\bar{\delta}(0{\leq}\bar{\delta}{\leq}1.0)$ of 0.024 and 0.022, respectively and, Gamma distribution is best-fit to the Heave sample data with smallest $\bar{\delta}$ of 0.027. The proposed method in this paper can be expected to adopt in various application areas estimating best-fit distributions to the sample data.

New Vehicle Classification Algorithm with Wandering Sensor (원더링 센서를 이용한 차종분류기법 개발)

  • Gwon, Sun-Min;Seo, Yeong-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.79-88
    • /
    • 2009
  • The objective of this study is to develop the new vehicle classification algorithm and minimize classification errors. The existing vehicle classification algorithm collects data from loop and piezo sensors according to the specification("Vehicle classification guide for traffic volume survey" 2006) given by the Ministry of Land, Transport and Maritime Affairs. The new vehicle classification system collects the vehicle length, distance between axles, axle type, wheel-base and tire type to minimize classification error. The main difference of new system is the "Wandering" sensor which is capable of measuring the wheel-base and tire type(single or dual). The wandering sensor obtains the wheel-base and tire type by detecting both left and right tire imprint. Verification tests were completed with the total traffic volume of 762,420 vehicles in a month for the new vehicle classification algorithm. Among them, 47 vehicles(0.006%) were not classified within 12 vehicle types. This results proves very high level of classification accuracy for the new system. Using the new vehicle classification algorithm will improve the accuracy and it can be broadly applicable to the road planning, design, and management. It can also upgrade the level of traffic research for the road and transportation infrastructure.

Characteristics of the Point-source Spectral Model for Odaesan Earthquake (M=4.8, '07. 1. 20) (오대산지진(M=4.8, '07. 1. 20)의 점지진원 스펙트럼 모델 특성)

  • Yun, Kwan-Hee;Park, Dong-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.241-251
    • /
    • 2007
  • The observed spectra from Odaesan earthquake were fitted to a point-source spectral model to evaluate the source spectrum and spatial features of the modelling error. The source spectrum was calculated by removing from the observed spectra the path and site dependent responses (Yun, 2007) that were previously revealed through an inversion process applied to a large accumulated spectral dataset. The stress drop parameter of one-corner Brune's ${\omega}^2$ source model fitted to the estimated source spectrum was well predicted by the scaling relation between magnitude and stress drop developed by Yun et al. (2006). In particular, the estimated spectrum was quite comparable to the two-corner source model that was empirically developed for recent moderate earthquakes occurring around the Korean Peninsula, which indicates that Odaesan earthquake is one of typical moderate earthquakes representative of Korean Peninsula. Other features of the observed spectra from Odaesan earthquake were also evaluated based on the commonly treated random error between the observed data and the estimated point-source spectral model. Radiation pattern of the error according to azimuth angle was found to be similar to the theoretical estimate. It was also observed that the spatial distribution of the errors was correlated with the geological map and the $Q_0$ map which are indicatives of seismic boundaries.

Generation of Ionospheric Delay in Time Comparison for a Specific GEO Satellite by Using Bernese Software

  • Jeong, Kwang Seob;Lee, Young Kyu;Yang, Sung Hoon;Hwang, Sang-wook;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.125-133
    • /
    • 2017
  • Time comparison is necessary for the verification and synchronization of the clock. Two-way satellite time and frequency (TWSTFT) is a method for time comparison over long distances. This method includes errors such as atmospheric effects, satellite motion, and environmental conditions. Ionospheric delay is one of the significant time comparison error in case of the carrier-phase TWSTFT (TWCP). Global Ionosphere Map (GIM) from Center for Orbit Determination in Europe (CODE) is used to compare with Bernese. Thin shell model of the ionosphere is used for the calculation of the Ionosphere Pierce Point (IPP) between stations and a GEO satellite. Korea Research Institute of Standards and Science (KRISS) and Koganei (KGNI) stations are used, and the analysis is conducted at 29 January 2017. Vertical Total Electron Content (VTEC) which is generated by Bernese at the latitude and longitude of the receiver by processing a Receiver Independent Exchange (RINEX) observation file that is generated from the receiver has demonstrated adequacy by showing similar variation trends with the CODE GIM. Bernese also has showed the capability to produce high resolution IONosphere map EXchange (IONEX) data compared to the CODE GIM. At each station IPP, VTEC difference in two stations showed absolute maximum 3.3 and 2.3 Total Electron Content Unit (TECU) in Bernese and GIM, respectively. The ionospheric delay of the TWCP has showed maximum 5.69 and 2.54 ps from Bernese and CODE GIM, respectively. Bernese could correct up to 6.29 ps in ionospheric delay rather than using CODE GIM. The peak-to-peak value of the ionospheric delay for TWCP in Bernese is about 10 ps, and this has to be eliminated to get high precision TWCP results. The $10^{-16}$ level uncertainty of atomic clock corresponds to 10 ps for 1 day averaging time, so time synchronization performance needs less than 10 ps. Current time synchronization of a satellite and ground station is about 2 ns level, but the smaller required performance, like less than 1 ns, the better. In this perspective, since the ionospheric delay could exceed over 100 ps in a long baseline different from this short baseline case, the elimination of the ionospheric delay is thought to be important for more high precision time synchronization of a satellite and ground station. This paper showed detailed method how to eliminate ionospheric delay for TWCP, and a specific case is applied by using this technique. Anyone could apply this method to establish high precision TWCP capability, and it is possible to use other software such as GIPSYOASIS and GPSTk. This TWCP could be applied in the high precision atomic clocks and used in the ground stations of the future domestic satellite navigation system.

A study on the camera working of 3D animation based on applied media aesthetic approach - Based on the Herbert Gettl's theory - (영상미학적 접근의 3D 애니메이션 카메라 워킹 연구 - 허버트 제틀의 이론을 중심으로 -)

  • Joo, Kwang-Myung;Oh, Byung-Keun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.209-218
    • /
    • 2005
  • Consciously or not, producers have to make many aesthetic choices in creative process of video production. If there are general acceptable aesthetic principles to make right choice it would be guideline of aesthetic decision to somewhat reduce mistakes and errors in the process. This paper proposes a theoretical approach on establishing the media aesthetic principle of 3D animation camera working, which is the most suitable for animation production context. We describe the Herbert Zettl's applied media aesthetics related directly to the camera, which is about the two-Dimensional field focusing on aspect radio and forces within the screen, three-dimensional field focusing on depth, volume, and four-dimensional field focusing on time and motion. In order to have theoretical approach we made an analysis on comparing a camera working of movie with 3D computer animation's one, and reconstructed these basic principles to be suited for the 3D animation production. When applied media aesthetics of the traditional camera working are applied to the 3D animation production, it could be an efficient guideline for it. Futhermore, if we develop the research for the relationship with various visual languages with the basis of these principles, the theory of creative picture composition method for the 3D animation production will be logically and systematically established.

  • PDF

Sliding Mode Control with Super-Twisting Algorithm for Surge Oscillation of Mooring Vessel System (슈퍼트위스팅 슬라이딩모드를 이용한 선박계류시스템의 동적제어)

  • Lee, Sang-Do;Lee, Bo-Kyeong;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.953-959
    • /
    • 2018
  • This paper deals with controlling surge oscillations of a mooring vessel system under large external disturbances such as wind, waves and currents. A control synthesis based on Sliding Mode Control (SMC) with a Super-Twisting Algorithm (STA) has been applied to suppress nonlinear surge oscillations of a two-point mooring system. Despite the advantages of robustness against parameter uncertainties and disturbances for SMC, chattering is the main drawback for implementing sliding mode controllers. First-order SMC shows convergence within the desired level of accuracy, in which chattering is the main obstacle related to the destructive phenomenon. Alternatively, STA completely eliminates chattering phenomenon with high accuracy even for large disturbances. SMC based on STA is an effective tool for the motion control of a nonlinear mooring system because it avoids the chattering problems of a first-order sliding mode controller. In addition, the error trajectories of controlled mooring systems implemented by means of STA form in the bounded region. Finally, the control gain effect of STA can be observed in sliding surface and position trajectory errors.

A Study on the Distance Error Correction of Maritime Object Detection System (해상물체탐지시스템 거리오차 보정에 관한 연구)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2023
  • Maritime object detection systems, which detects small maritime obstacles such as fish farm buoys and visualizes distance and direction, is equipped with a 3-axis gimbal to compensate for errors caused by hull motion, but there is a limit to distance error corrections necessitated by the vertical movement of the camera and the maritime object due to wave motions. Therefore, in this study, the distance error of maritime object detection systems caused by the movement of the water surface according to the external environment is analyzed and corrected using average filter and moving average filter. Random numbers following a Gaussian standard normal distribution were added to or subtracted from the image coordinates to reproduce the rise or fall of the buoy under irregular waves. The distance calculated according to the change of image coordinates, the predicted distance through the average filter and the moving average filter, and the actual distance measured by laser distance meter were compared. In phases 1 and 2, the error rate increased to a maximum of 98.5% due to the changes of image coordinates due to irregular waves, but the error rate decreased to 16.3% with the moving average filter. This error correction capability was better than with the average filter, but there was a limit due to failure to respond to the distance change. Therefore, it is considered that use of the moving average filter to correct the distance error of the maritime object detection system will enhance responses to the real-time distance change and greatly improve the error rate.

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.

A Study on Matched Errors between PET and CT Images in PET/CT Examination According to Breathing Protocols (PET/CT 검사에서 호흡법에 따른 PET과 CT 영상의 정합오차)

  • Kim, Sang Un;Kwak, Dong Woo;Park, Hyeon Soo;Bang, Seong Ae;Park, Yeong Jae;LEE, In Won
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.7-10
    • /
    • 2013
  • Purpose : This study evaluated the effects of breathing protocols on matching results of PET and CT images using two breathing protocols such as free breathing and acquisition in holding the breathing after the normal expiration in acquiring CT images. Materials and Methods: Whole body FDG PET and CT images of 200 patients (mean age: 58 (range 20~84), 103 males and 97 females) using Discovery VCT (GE Healthcare, Milwaukee, USA). When taking CT images, subjects were asked to breathe freely (free breathing, n=100) or hold the breathing after the normal expiration (Hold, n=100). In the whole body image coronal section where PET and CT were matched, the matched error of the boundary between diaphragm and liver was measured in length. The matched errors were compared according to breathing protocol by age, sex and disease. The verification of statistical significance was made by SPSS 15.0 (SPSS Inc., Chicago, IL, USA) via one way ANOVA. Results: The matched error in all was 0.87 mm. According to breathing protocol, there was no significant difference in matched error as1.01 mm in free breathing and as 0.73 mm in hold breathing (p=.688). The matched error according to sex did not show significant difference as 1.08 mm of males, and 0.93 mm of females in free breathing (p=.517). In hold breathing, there was no significant difference as 0.79 mm of males and 0.66 mm of females (p=.738). There was no significant difference in matched error by age between free breathing and hold breathing (free breathing (p=.728), hold (p=.465). There was no significant difference in matched error by disease between free breathing and hold breathing (free breathing (p=.197), hold (p=.518) Conclusion: The difference in matched error between free breathing and hold breathing was less than 5 mm at 99%. There was no statistically significant difference in matched error by breathing protocol, age and disease. It was proved that there was no difference in matched error between PET and CT images according to breathing protocol during PET/CT scan.

  • PDF

Measurements of Setup Error and Physiological Movement of Liver by Using Electronic Portal Imaging Device in Patients with Hepatocellular Carcinoma (간암환자에서 Electronic Portal Imaging Device(EPID)를 이용한 자세 오차 및 종양 이동 거리의 객관적 측정)

  • Keum Ki Chang;Lee Sang-wook;Shin Hyun Soo;Kim Gwi Eon;Sung Jinsil Seong;Lee Chang Geol;Chu Sung Sil;Chang Sei-Kyung;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.107-113
    • /
    • 2000
  • Purpose : The goal of this study 닌as to improve the accuracy of three-dimensional conformal radiotherapy (3-D CRT) by measuring the treatment setup error and physiological movement of liver based on the analysis of images which were obtained by electronic portal imaging device (EPID). Materials and Methods : For 10 patients with hepatocellular carcinoma, 4-7 portal images were obtained by using EPID during the radiotherapy from each patient daiiy. We analyzed the setup error and physiological movement of liver based on the verification data. We also determined the safety margin of the tumor in 3-D CRT through the analysis of physiological movement. Results : The setup errors were measured as 3mm with standard deviation 1.70 mm in x direction and 3.7 mm with standard deviation 1.88 mm in y direction respectively. Hence, deviation were smaller than 5mm from the center of each axis. The measured range of liver movement due to the physiological motion was 8.63 mm on the average. Considering the motion of liver and setup error, the safety margin of tumor was at least 15 mm. Conclusion : EPID is a very useful device for the determination of the optimal margin of the tumor, and thus enhance the accuracy and stability of the 3-D CRT in patients with hepatocellular carcinoma.

  • PDF