• Title/Summary/Keyword: Motion errors

Search Result 627, Processing Time 0.02 seconds

Development and Application of the High Speed Weigh-in-motion for Overweight Enforcement (고속축하중측정시스템 개발과 과적단속시스템 적용방안 연구)

  • Kwon, Soon-Min;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.69-78
    • /
    • 2009
  • Korea has achieved significant economic growth with building the Gyeongbu Expressway. As the number of new road construction projects has decreased, it becomes more important to maintain optimal status of the current road networks. One of the best ways to accomplish it is weight enforcement as active control measure of traffic load. This study is to develop High-speed Weigh-in-motion System in order to enhance efficiency of weight enforcement, and to analyze patterns of overloaded trucks on highways through the system. Furthermore, it is to review possibilities of developing overweight control system with application of the HS-WIM system. The HS-WIM system developed by this study consists of two sets of an axle load sensor, a loop sensor and a wandering sensor on each lane. A wandering sensor detects whether a travelling vehicle is off the lane or not with the function of checking the location of tire imprint. The sensor of the WIM system has better function of classifying types of vehicles than other existing systems by detecting wheel distance and tire type such as single or dual tire. As a result, its measurement errors regarding 12 types of vehicle classification are very low, which is an advantage of the sensor. The verification tests of the system under all conditions showed that the mean measurement errors of axle weight and gross axle weight were within 15 percent and 7 percent respectively. According to the WIM rate standard of the COST-323, the WIM system of this study is ranked at B(10). It means the system is appropriate for the purpose of design, maintenance and valuation of road infrastructure. The WIM system in testing a 5-axle cargo truck, the most frequently overloaded vehicle among 12 types of vehicles, is ranked at A(5) which means the system is available to control overloaded vehicles. In this case, the measurement errors of axle load and gross axle load were within 8 percent and 5 percent respectively. Weight analysis of all types of vehicles on highways showed that the most frequently overloaded vehicles were type 5, 6, 7 and 12 among 12 vehicle types. As a result, it is necessary to use more effective overweight enforcement system for vehicles which are seriously overloaded due to their lift axles. Traffic volume data depending upon vehicle types is basic information for road design and construction, maintenance, analysis of traffic flow, road policies as well as research.

  • PDF

A Path-Tracking Control of Optically Guided AGV Using Neurofuzzy Approach (뉴로퍼지방식 광유도식 무인반송차의 경로추종 제어)

  • Im, Il-Seon;Heo, Uk-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.723-732
    • /
    • 2001
  • In this paper, the neurofuzzy controller of optically guided AGV is proposed to improve the path-tracking performance A differential steered AGV has front-side and rear-side optical sensors, which can identify the guiding path. Due to the discontinuity of measured data in optical sensors, optically guided AGVs break away easily from the guiding path and path-tracking performance is being degraded. Whenever the On/Off signals in the optical sensors are generated discontinuously, the motion errors can be measured and updated. After sensing, the variation of motion errors can be estimated continuously by the dead reckoning method according to left/right wheel angular velocity. We define the estimated contour error as the sum of the measured contour in the sensing error and the estimated variation of contour error after sensing. The neurofuzzy system consists of incorporating fuzzy controller and neural network. The center and width of fuzzy membership functions are adaptively adjusted by back-propagation learning to minimize th estimated contour error. The proposed control system can be compared with the traditional fuzzy control and decision system in their network structure and learning ability. The proposed control strategy is experience through simulated model to check the performance.

  • PDF

Low Complexity Video Encoding Using Turbo Decoding Error Concealments for Sensor Network Application (센서네트워크상의 응용을 위한 터보 복호화 오류정정 기법을 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hyuk-Jae;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.11-21
    • /
    • 2008
  • In conventional video coding, the complexity of encoder is much higher than that of decoder. However, as more needs arises for extremely simple encoder in environments having constrained energy such as sensor network, much investigation has been carried out for eliminating motion prediction/compensation claiming most complexity and energy in encoder. The Wyner-Ziv coding, one of the representative schemes for the problem, reconstructs video at decoder by correcting noise on side information using channel coding technique such as turbo code. Since the encoder generates only parity bits without performing any type of processes extracting correlation information between frames, it has an extremely simple structure. However, turbo decoding errors occur in noisy side information. When there are high-motion or occlusion between frames, more turbo decoding errors appear in reconstructed frame and look like Salt & Pepper noise. This severely deteriorates subjective video quality even though such noise rarely occurs. In this paper, we propose a computationally extremely light encoder based on symbol-level Wyner-Ziv coding technique and a new corresponding decoder which, based on a decision whether a pixel has error or not, applies median filter selectively in order to minimize loss of texture detail from filtering. The proposed method claims extremely low encoder complexity and shows improvements both in subjective quality and PSNR. Our experiments have verified average PSNR gain of up to 0.8dB.

The star catalogue in Seonggyeong - Comparison with the modern Hipparcos Catalogue

  • Kim, Dong-Bin;Kim, Chun-Hwey;Lee, Yong-Sam
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.19.2-19.2
    • /
    • 2011
  • In 1861 Nam Byeong-Gil published a book called as "Seonggyeong" which contains a star catalogue (NBGC) with the positions, magnitudes, and star maps for 1449 stars. The NBGC lists only the traditional Chinese stars selected from "the sequel to the Qing Dynasty Star Catalogue and Star Map." To identify each star from the NBGC with modern counterpart, we correct the positions of the Hipparcos stars brighter than 6.5 mag for proper motion, then precess the coordinates to the epoch of the NBGC. For each star in the NBGC, we find the nearest counterpart in the Hipparcos Catalogue (HC). If a much brighter star is at a slightly larger angular distance, we select that star as the secure counterpart. As a result, 95.5% of the stars in the NBGC were identified. We find a very good overall agreement of our results with a previous analysis by Ahn et al. (1996, Journal of the Korean History of Science Society, vol. I). For securely identified stars, we analyse its accuracy on the basis of comparison with data from the HC. The correlation of the errors between right ascensions and declinations is significantly deviated from spherical distribution. The magnitudes recorded in the NBGC correlate well with modern values. The accuracy of position decreases slowly with magnitude. Right ascensions and declinations have error distributions with ${\sigma}$ = 2.0' for the former while the latter with ${\sigma}$ = 1.6', but with much more errors >5' than expected for a Gaussian distribution.

  • PDF

Double Demodulation of a Ring Laser Dither Signal for Reducing the Dynamic Error of an Inertial Navigation System (관성항법장치의 동적오차 개선을 위한 링레이저 각진동 신호의 이중 복조방법)

  • Shim, Kyu-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.82-89
    • /
    • 2014
  • This paper discusses the methods for reducing the sampling time quantization errors of the body dither type ring laser gyroscope. A ring laser gyroscope has the angle quantization error which is generated by the frequency counting method of the laser beat signal and sampling time quantization error which is generated by the demodulation method for eliminating the body dithering in which the sampling periods are fitted to the dither periods. Generally, because the dither periods are longer than the calculation periods of the inertial navigation system, vehicle navigation errors are produced by long time attitude update missing during the vehicle move with a high dynamical motion. In this paper, the double demodulation method is proposed for reducing the sampling time quantization error and its effects under the dynamic situation are confirmed by simulation.

Evaluation of Inertial Measurement Sensors for Attitude Estimation of Agricultural Unmanned Helicopter (농용 무인 헬리콥터의 자세추정을 위한 관성센서의 성능 평가)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • The precision aerial application of agricultural unmanned helicopters has become a new paradigm for small farms with orchards, paddy, and upland fields. The needs of agricultural applications require easy and affordable control systems. Recent developments of MEMS technology based on inertial sensors and high speed DSP have enabled the fabrication of low-cost attitude system. Therefore, this study evaluates inertial MEMS sensors for estimating the attitude of an agricultural unmanned helicopter. The accuracies and errors of gyro and acceleration sensors were verified using a pendulum system. The true motion values were calculated using a theoretical estimation and absolute encoder measurement of the pendulum, and then the sensor output was compared with reference values. When comparing the sensor measurements and true values, the errors were determined to be 4.32~5.72%, 3.53~6.74%, and 3.91~4.16% for the gyro rate and x-, z- accelerations, respectively. Thus, the measurement results confirmed that the inertial sensors are effective for establishing an attitude and heading reference system (AHRES). The sensors would be constructed in gimbals for the estimating and proving attitude measurements in the following paper.

Real-Time Determination of Relative Position Between Satellites Using Laser Ranging

  • Jung, Shinwon;Park, Sang-Young;Park, Han-Earl;Park, Chan-Deok;Kim, Seung-Woo;Jang, Yoon-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.351-362
    • /
    • 2012
  • We made a study on real-time determination method for relative position using the laser-measured distance data between satellites. We numerically performed the determination of relative position in accordance with extended Kalman filter algorithm using the vectors obtained through nonlinear equation of relative motion, laser simulator for distance measurement, and attitude determination of chief satellite. Because the spherical parameters of relative distance and direction are used, there occur some changes in precision depending on changes in relative distance when determining the relative position. As a result of simulation, it was possible to determine the relative position with several millimeter-level errors at a distance of 10 km, and sub-millimeter level errors at a distance of 1 km. In addition, we performed the determination of relative position assuming the case that global positioning system data was not received for long hours to see the impact of determination of chief satellite orbit on the determination of relative position. The determination of precise relative position at a long distance carried out in this study can be used for scientific mission using the satellite formation flying.

A study on the characteristics of hull shape parameter of fishing vessel types (트롤어선 선종의 선형 특성 계수에 관한 연구)

  • KIM, Su-Hyung;LEE, Chun-Ki;KIM, Min-Son
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.163-171
    • /
    • 2020
  • Engaged in trawling in limited fishing grounds with a number of fish schools could cause collisions between fishing vessels. Therefore, providing accurate maneuver information according to the situation could be regarded as essential for improving seafarers safety and fishing efficiency as well as safety of navigation. It is difficult to obtain all maneuver information through sea trial tests only, so a method through empirical formula is necessary. Since most empirical formulas are developed for merchant ship types, especially the characteristics of hull shape parameter like CbB/L and dCb/B etc. are clearly different between fishing vessels and merchant ships, this could occur estimation errors. Therefore, in this study, the authors have selected target fishing vessels and merchant ships and analyzed the characteristics of hull shape parameter according to the ship types. Based on this analysis, the empirical formula developed for the merchant ship type has applied to the target fishing vessels; it has verified through the turning motion simulation that the estimation error could be generated. In conclusion, it is necessary to include the characteristics of the hull shape parameter of fishing vessels in the empirical formula in order to apply the empirical formula has developed for merchant ship types to fishing vessel types.

A Case Study of the Design of Robot Welding Station in an Excavator Factory Using 3D Simulation (굴삭기공장의 로봇용접 작업장 설계에 대한 3D 시뮬레이선 사례 연구)

  • Moon, Dug-Hee;Cho, Hyun-Il;Baek, Seung-Geun
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • Virtual Manufacturing is a powerful methodology for developing a new product, new equipment and new production system. It enables the checking errors in design before production. This paper is a case study of virtual manufacturing in an excavator factory. The final welding operations of the boom and the rotating table of upper body are selected for application. 3D models of parts and fixtures are developed with $CATIA^{(R)}$ and 3D simulation models are developed with $IGRIP^{(R)}$. These models are used for verifying the design of fixture and for the motion design of robot. As a result, the manual welding systems are replaced by automatic systems and many design errors are corrected in the design phase, which reduces the developing cost and time.

  • PDF

Attitude Estimation of Agricultural Unmanned Helicopters using Inertial Measurement Sensors (관성센서를 이용한 농용 무인 헬리콥터의 자세 추정)

  • Bae, Yeonghwan;Oh, Minseok;Koo, Young Mo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • Agricultural unmanned helicopters have become a new paradigm for aerial application. Yet, such agricultural helicopters require easy and affordable attitude control systems. Therefore, this study presents an affordable attitude measurement system using a DCM (direction cosine matrix) algorithm that would be applied to agricultural unmanned helicopters. An IMU using a low-cost MEMS and an algorithm to estimate the attitude of the helicopter were applied in a gimbals structure to evaluate the accuracy of the attitude measurements. The estimation errors in the attitude were determined in comparison with the true angles determined by absolute position encoders. The DCM algorithm and sensors showed an accuracy of about 1.1% for the roll and pitch angle estimation. However, the accuracy of the yaw angle estimation at 3.7% was relatively larger. Such errors may be due to the magnetic field of the stepping motor and encoder system. Notwithstanding, since the intrinsic behavior of the agricultural helicopter remains steady, the determination of attitude would be reliable and practical.