• 제목/요약/키워드: Motion equations

검색결과 2,308건 처리시간 0.022초

회전하는 환상 디스크의 면내 고유진동 해석 (In-Plane Natural Vibration Analysis of a Rotating Annular Disk)

  • 김창부;송승관
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1379-1388
    • /
    • 2008
  • In this paper, we present the equations of motion by which the natural vibration of a rotating annular disk can be accurately analyzed. These equations are derived from the theory of finite deformation and the principle of virtual work. The radial displacements of annular disk which is rotating at constant angular velocity are determined by non-linear equations formulated using 1-dimensional finite elements in radial direction. The equations of the in-plane vibrations at disturbed state are also formulated using 1-dimensional finite elements in radial direction along the number of nodal diameters. They are expressed as in functions of the radial displacements at the steady state and the disturbed displacements about the steady state. In-plane static deformation modes of the annular disk are used as the interpolation functions of 1-dimensional finite elements in radial direction. The natural vibrations of an annular disk with different boundary conditions are analyzed by using the presented model and the 3-dimensional finite element model to verify accuracy of the presented equations of motion. Its results are compared and discussed.

  • PDF

Unconditional stability for explicit pseudodynamic testing

  • Chang, Shuenn-Yih
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.411-428
    • /
    • 2004
  • In this study, a newly developed unconditionally stable explicit method is employed to solve momentum equations of motion in performing pseudodynamic tests. Due to the explicitness of each time step this pseudodynamic algorithm can be explicitly implemented, and thus its implementation is simple when compared to an implicit pseudodynamic algorithm. In addition, the unconditional stability might be the most promising property of this algorithm in performing pseudodynamic tests. Furthermore, it can have the improved properties if using momentum equations of motion instead of force equations of motion for the step-by-step integration. These characteristics are thoroughly verified analytically and/or numerically. In addition, actual pseudodynamic tests are performed to confirm the superiority of this pseudodynamic algorithm.

Induction Motor Position Controller Based on Rotational Motion Equations

  • Salem, Mahmoud M.
    • Journal of Power Electronics
    • /
    • 제8권3호
    • /
    • pp.268-274
    • /
    • 2008
  • This paper presents a proposed position controller for a vector controlled induction motor. The position controller design depends on the rotational motion equations and a classical speed controller (CSC) performance. The CSC is designed to have the ability to track variable reference inputs and to provide a predefined system performance. Standard position controller in industry is presented to analyze its performance and its drawbacks. Then the proposed position controller is designed, based on the well defined rotational motion equations. The proposed position controller and the CSC are applied to control the position and speed of the vector controlled induction motor with different ratings. Simulation results at different operating conditions are presented to evaluate the proposed controllers' performance. The results show that the CSC can drive the motor with a predefined speed performance and can track a variable reference speed with an approximately zero steady state error. The results also show that the proposed position controller has the ability to effect high-precision positioning in a limited time and to track a variable reference position with a zero steady state error.

6×6 자율주행 차량의 실시간 해석을 위한 연구 (A Study on the Real-Time Analysis of a 6×6 Autonomous Vehicle)

  • 조두호;이정한;이기창;유완석
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1433-1441
    • /
    • 2009
  • In multibody dynamic analysis, one of the most important problems is to reduce computation times for real-time simulation. This paper presents the derivation procedure of equations of motion of a 6${\times}$6 autonomous vehicle in terms of chassis local coordinates which do not require coordinates transformation matrix to enhance efficiency for real-time dynamic analysis. Also, equations of motion are derived using the VT(velocity transformation) technique and symbolic computation method coded by MATLAB. The Jacobian matrix of the equations of motion of a system is derived from symbolic operations to apply the implicit integration method. The analysis results were compared with ADAMS results to verify the accuracy and approve the feasibility of real time analysis.

Dynamic Modelling of Planar Mechanisms Using Point Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1977-1985
    • /
    • 2003
  • In the present study, the dynamic modelling of planar mechanisms that consist of a system of rigid bodies is carried out using point coordiantes. The system of rigid bodies is replaced by a dynamically equivalent constrained system of particles. Then for the resulting equivalent system of particles, the concepts of linear and angular momentums are used to generate the equations of motion without either introducing any rotational coordinates or distributing the external forces and force couples over the particles. For the open loop case, the equations of motion are generated recursively along the open chains. For the closed loop case, the system is transformed to open loops by cutting suitable kinematic joints with the addition of cut-joints kinematic constraints. An example of a multi-branch closed-loop system is chosen to demonstrate the generality and simplicity of the proposed method.

이족로봇의 동적 보행계획과 역동역학 해석 (Dynamic Walking Planning and Inverse Dynamic Analysis of Biped Robot)

  • 박인규;김진걸
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.133-144
    • /
    • 2000
  • The dynamic walking planning and the inverse dynamics of the biped robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian corrdinates then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot the holonomic constraints are added or deleted on the equations of motion. the number of these constraints can be changed by types of walking patterns with three modes. In order for the dynamic walking to be stabilizable optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

이족보행로봇의 동적보행과 역동역학 해석 (Dynamic Walking and Inverse Dynamic Analysis of Biped Walking Robot)

  • 박인규;김진걸
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.548-555
    • /
    • 2000
  • The dynamic walking and the inverse dynamics of the biped walking robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian coordinates, then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot, the holonomic constraints are added or deleted on the equations of motion. The number of these constraints can be changed by types of walking pattern with three modes. In order for the dynamic walking to be stabilizable, optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory

  • Bagdatli, Suleyman M.
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.281-298
    • /
    • 2015
  • In this study, nonlinear transverse vibrations of tensioned Euler-Bernoulli nanobeams are studied. The nonlinear equations of motion including stretching of the neutral axis and axial tension are derived using nonlocal beam theory. Forcing and damping effects are included in the equations. Equation of motion is made dimensionless via dimensionless parameters. A perturbation technique, the multiple scale methods is employed for solving the nonlinear problem. Approximate solutions are applied for the equations of motion. Natural frequencies of the nanobeams for the linear problem are found from the first equation of the perturbation series. From nonlinear term of the perturbation series appear as corrections to the linear problem. The effects of the various axial tension parameters and different nonlocal parameters as well as effects of different boundary conditions on the vibrations are determined. Nonlinear frequencies are estimated; amplitude-phase modulation figures are presented for simple-simple and clamped-clamped cases.

파퍼식 가스차단기의 동작특성 해석 (Analysis of Opening Characteristics for Puffer GCB)

  • 김홍규;정진교;박경엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권10호
    • /
    • pp.560-567
    • /
    • 2002
  • This paper presents the calculation of opening characteristics for puffer GCB with the equations of the flow field and the motion of the driving mechanism. To obtain the stroke curve, the motion equation is solved simultaneously with the Euler equations. For a given Piston location, the flow field is solved. The pressure inside the Puffer chamber is then used to calculate the moving velocity and the new position of the piston. The FVFLIC method is employed to solve the axisymmetric Euler equations and the motion equation is solved by the Runge-Kutta method. The method is applied to the puffer GCB model and the stroke curve and the pressure rise in puffer chamber under no load condition are compared with the measured ones.

Free vibration analysis of axially moving beam under non-ideal conditions

  • Bagdatli, Suleyman M.;Uslu, Bilal
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.597-605
    • /
    • 2015
  • In this study, linear vibrations of an axially moving beam under non-ideal support conditions have been investigated. The main difference of this study from the other studies; the non-ideal clamped support allow minimal rotations and non-ideal simple support carry moment in minimal orders. Axially moving Euler-Bernoulli beam has simple and clamped support conditions that are discussed as combination of ideal and non-ideal boundary with weighting factor (k). Equations of the motion and boundary conditions have been obtained using Hamilton's Principle. Method of Multiple Scales, a perturbation technique, has been employed for solving the linear equations of motion. Linear equations of motion are solved and effects of different parameters on natural frequencies are investigated.