• Title/Summary/Keyword: Motion effects

Search Result 2,971, Processing Time 0.028 seconds

Simulation of Secondary Motion of Piston Assemblies (피스톤 어셈블리의 2차 운동에 관한 시뮬레이션)

  • 오병근;조남효
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.231-243
    • /
    • 2000
  • This paper describes a simulation of secondary motion of piston assemblies using PISDYN by Ricardo. Motions of the piston, pin, rod and skirt are separately calculated, by integrating equations of motion for individual components and dynamic degrees of freedom. The effects of engine speed at full load and pin offsets on the piston assembly secondary motions, forces and friction were investigated in parametric study for 4-cylinder gasoline engine. Results show that lateral displacement and friction loss of the piston increase as a function of engine speed. The lateral motion of the piston is affected by the change in pin offset. The minimum friction loss for the condition of 4800rpm WOT occurs at a pin offset of 1.6mm.

  • PDF

Effects of Natural Independent Visual Background for Reducing Simulator Sickness (자연형 IVB(Independent Visual Background)의 Simulator Sickness 감소효과)

  • 김도회;임정위
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2002
  • Several studies indicated that an independent visual background (IVB) reduced simulator sickness (SS) and balance disturbance associated with exposure to virtual environments (VEs) and motion simulators. A recent study showed that an IVB comprised of an earth-fixed grid was less effective in a complex driving simulator than in a simple VE. Subjects' post-experiment reports indicated that the VE motion "induced" motion of the earth-fixed grid m. This led to the suggestion that an IVB comprised of clouds would be less subject to induced motion and therefore would alleviate nausea more effectively than a grid IVB. Clouds are "natural" and are usually perceived as relatively stable, whereas a grid has no inherent stability. 12 subjects were exposed to complex motion through a simulated environment in a driving simulator under 3 IVB conditions: grid, less clouds, many clouds. They reported less nausea when the many-cloud IVB was used relative to the grid IVB condition. grid IVB condition.

Missile Flyout Launch Dynamic Analysis Including Ship Motion (함정운동을 고려한 유도탄의 발사초기 동력학 해석)

  • 안진수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.37-49
    • /
    • 2002
  • In this paper, flyout stability of missile that is launched in inclined launcher using sabots is analyzed. To include missile bending motion during flyout, FEA model of missile is converted into eight concentrated mass and equivalent stiffness matrix. Six d.o.f ship motion that have influence on flyout stability is modeled and missile firing time is modeled as probability variable to take arbitrary ship attitude into account. Gap between missile and sabot is modeled as normal distribution probability variable and Monte Carlo simulation is performed. As results, the coriolis acceleration effects by ship motion are analyed and statistical results of missile pitch rate are shown.

Nonlinear vibration analysis of an electrostatically excited micro cantilever beam coated by viscoelastic layer with the aim of finding the modified configuration

  • Poloei, E.;Zamanian, M.;Hosseini, S.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.193-207
    • /
    • 2017
  • In this study, the vibration of an electrostatically actuated micro cantilever beam is analyzed in which a viscoelastic layer covers a portion of the micro beam length. This proposed model is considered as the main element of mass and pollutant micro sensors. The nonlinear motion equation is extracted by means of Hamilton principle, considering nonlinear shortening effect for Euler-Bernoulli beam. The non-linear effects of electrostatic excitation, geometry and inertia have been taken into account. The viscoelastic model is assumed as Kelvin-Voigt model. The motion equation is discretized by Galerkin approach. The linear free vibration mode shapes of non-uniform micro beam i.e. the linear mode shape of the system by considering the geometric and inertia effects of viscoelastic layer, have been employed as comparison function in the process of the motion equation discretization. The discretized equation of motion is solved by the use of multiple scale method of perturbation theory and the results are compared with the results of numerical Runge-Kutta approach. The frequency response variations for different lengths and thicknesses of the viscoelastic layer have been founded. The results indicate that if a constant volume of viscoelastic layer is to be deposited on the micro beam for mass or gas sensor applications, then a modified configuration may be found by using the analysis of this paper.

Investigation of effectiveness of double concave friction pendulum bearings

  • Ates, Sevket
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.195-213
    • /
    • 2012
  • This paper presents the investigation of the stochastic responses of seismically isolated bridges subjected to spatially varying earthquake ground motions including incoherence, wave-passage and site-response effects. The incoherence effect is examined by considering Harichandran and Vanmarcke coherency model. The effect of the wave-passage is dealt with various wave velocities in the response analysis. Homogeneous firm, medium and soft soil conditions are selected for considering the site-response effect where the bridge supports are constructed. The ground motion is described by filtered white noise and applied to each support points. For seismic isolation of the bridge, single and double concave friction pendulum bearings are used. Due to presence of friction on the concave surfaces of the isolation systems, the equation of motion of is non-linear. The non-linear equation of motion is solved by using equivalent linearization technique of non-linear stochastic analyses. Solutions obtained from the stochastic analyses of non-isolated and isolated bridges to spatially varying earthquake ground motions compared with each other for the special cases of the ground motion model. It is concluded that friction pendulum systems having single and double concave surfaces have important effects on the stochastic responses of bridges to spatially varying earthquake ground motions.

A Study on Motion of a Flooding and Un-steerable Vessel in Stormy Weather Condition (침수된 조타불능선의 악천후에서의 거동연구)

  • KIM, Sung-Soo;PARK, Byung-Soo;KANG, Dong-Hoon;LEE, Jong-Hyun;CHO, Hyun-Kuk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.286-296
    • /
    • 2017
  • This paper conducted a simulation to research the motion of a vessel, which had the flooding accident in the Bering Sea in 2014, thereby being flooded and un-steerable. As the wind condition was very harsh, the vessel was modeled as 3D including large upper deck structures and the Fujiwara's method was used for an estimation of the effect of wind forces and moments acting on ship. In the case of wave influence, AQWA-Drift that enables considering the effects of drift force and AQWA-Naut that enables considering the effects of green water were mainly used. Basically, loading and flooding condition were equal to the accident condition but half-drained condition was also used to consider drain ability. Furthermore, both 6 DOF and 5 DOF option that Yaw motion is fixed, were utilized to compare the steerable and un-steerable condition. As a result, the author found out that what roll angle triggers green water, how often it happens, and how the vessel moves on the stormy weather condition.

Effects of Variable Block Size Motion Estimation in Transform Domain Wyner-Ziv Coding

  • Kim, Do-Hyeong;Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.381-384
    • /
    • 2009
  • In the Wyner-Ziv coding, compression performance highly depends on the quality of the side information since better quality of side information brings less channel noise and less parity bit. However, as decoder generates side information without any knowledge of the current Wyner-Ziv frame, it doesn't have optimal criterion to decide which block is more advantageous to generate better side information. Hence, in general, fixed block size motion estimation (ME) is performed in generating side information. By the fixed block size ME, the best coding performance cannot be attained since some blocks are better to be motion estimated in different block sizes. Therefore if there is a way to find appropriate ME block of each block, the quality of the side information might be improved. In this paper, we investigate the effects of variable block sizes of ME in generating side information.

  • PDF

Effects of Flexion-Extension of Stretching on Craniocervical (스트레칭 굴곡 신전이 두경부에 미치는 영향)

  • Jeon, Ho-Young;Jung, Hyun-Sung;Bae, Sung-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.1 no.1
    • /
    • pp.109-116
    • /
    • 2006
  • Purpose : To identify the effects of flexion-extension of stretching on the functional improvement of patients with neck myofascial pain syndrome. Methods : the present research investigated 30 patients with neck myofascial syndrome, dividing them into a group doing flexion-extension of stretching. This study examined degree of recovery from neck pain by comparing their neck myofascial pain syndrome before and after the treatment, and compared to find difference in the degree of recovery from myofascial pain syndrome. Results : The results are as follows. For the flexion of stretching, 1. For the visual analogue scale (VAS) decreased significantly for six weeks treatment, 2. For the flexion decreased significantly for six weeks treatment. and the range of motion of cervical vertebrae increased significantly(p>.05). 3. For Stretching, range of motion left rotation indicated significant difference after pre test and after two week but no significant difference after six week. 4. For the left rotation decreased significantly for six weeks treatment. and the range of motion of cervical vertebrae increased significantly(p>.05). 5. For the right rotation decreased significantly for six weeks treatment. and the range of motion of cervical vertebrae increased significantly(p>.05). Conclusion : This study suggest that flexion-extension of stretching have an effect on the functional improvement of patients with neck myofascial pain syndrome.

  • PDF

Time-domain analysis of nonlinear motion responses and structural loads on ships and offshore structures: development of WISH programs

  • Kim, Yong-Hwan;Kim, Kyong-Hwan;Kim, Jae-Han;Kim, Tae-Young;Seo, Min-Guk;Kim, Yoo-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.37-52
    • /
    • 2011
  • The present paper introduced a computer program, called WISH, which is based on a time-domain Rankine panel method. The WISH has been developed for practical use to predict the linear and nonlinear ship motion and structural loads in waves. The WISH adopts three different levels of seakeeping analysis: linear, weakly-nonlinear and weak-scatterer approaches. Later, WISH-FLEX has been developed to consider hydroelasticity effects on hull-girder structure. This program can solve the springing and whipping problems by coupling between the hydrodynamic and structural problems. More recently this development has been continued to more diverse problems, including the motion responses of multiple adjacent bodies, the effects of seakeeping in ship maneuvering, and the floating-body motion in finite-depth domain with varying bathymetry. This paper introduces a brief theoretical and numerical background of the WISH package, and some validation results. Also several applications to real ships and offshore structures are shown.

Reduced Frequency Effects on the Near-Wake of an Oscillating Elliptic Airfoil

  • Chang, Jo-Won;Eun, Hee-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1234-1245
    • /
    • 2003
  • An experimental study was carried out to investigate the reduced frequency effect on the near-wake of an elliptic airfoil oscillating in pitch. The airfoil was sinusoidally pitched around the center of the chord between -5$^{\circ}$and +25$^{\circ}$angles of attack at an airspeed of 3.4 m/s. The chord Reynolds number and reduced frequencies were 3.3 ${\times}$10$^4$, and 0.1, 0.7, respectively Phase-averaged axial velocity and turbulent intensity profiles are presented to show the reduced frequency effects on the near-wake behind the airfoil oscillating In pitch. Axial velocity defects in the near-wake region have a tendency to increase in response to a reduced frequency during pitch up motion, whereas it tends to decrease during pitch down motion at a positive angle of attack. Turbulent intensity at positive angles of attack during the pitch up motion decreased in response to a reduced frequency, whereas turbulent intensity during the pitch down motion varies considerably with downstream stations. Although the true instantaneous angle of attack compensated for a phase-lag is large, the wake thickness of an oscillating airfoil is not always large because of laminar or turbulent separation.