• Title/Summary/Keyword: Motion deblurring

Search Result 15, Processing Time 0.021 seconds

Analysis on Optimal Approach of Blind Deconvolution Algorithm in Chest CT Imaging (흉부 컴퓨터단층촬영 영상에서 블라인드 디컨볼루션 알고리즘 최적화 방법에 대한 연구)

  • Lee, Young-Jun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.145-150
    • /
    • 2022
  • The main purpose of this work was to restore the blurry chest CT images by applying a blind deconvolution algorithm. In general, image restoration is the procedure of improving the degraded image to get the true or original image. In this regard, we focused on a blind deblurring approach with chest CT imaging by using digital image processing in MATLAB, which the blind deconvolution technique performed without any whole knowledge or information as to the fundamental point spread function (PSF). For our approach, we acquired 30 chest CT images from the public source and applied three type's PSFs for finding the true image and the original PSF. The observed image might be convolved with an isotropic gaussian PSF or motion blurring PSF and the original image. The PSFs are assumed as a black box, hence restoring the image is called blind deconvolution. For the 30 iteration times, we analyzed diverse sizes of the PSF and tried to approximate the true PSF and the original image. For improving the ringing effect, we employed the weighted function by using the sobel filter. The results was compared with the three criteria including mean squared error (MSE), root mean squared error (RMSE) and peak signal-to-noise ratio (PSNR), which all values of the optimal-sized image outperformed those that the other reconstructed two-sized images. Therefore, we improved the blurring chest CT image by using the blind deconvolutin algorithm for optimal approach.

Point Spread Function Optimization for Motion Deblurring with External High-speed Lighting (고속 조명 기반 모션 디블러링을 위한 PSF 최적화)

  • Lee, Jaelin;Oh, Gyoheak;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.204-205
    • /
    • 2019
  • 영상 보안 시스템에 사용되는 일반적인 CCTV 로 획득한 영상에서의 움직이는 피사체의 화질은 좋지 않다. 본 논문에서는 주변광을 정의하고 이를 통해 외부조명 조건하에 획득한 영상의 모션 디블러링을 위한 PSF 패턴을 최적화하여 영상의 화질을 개선하는 방법을 제안한다. 제안하는 알고리즘은 외부조명 동작 패턴에 주변광을 분석한 패턴을 더하여 영상복원을 수행하기 위한 PSF 패턴을 생성한다. 제안한 방법으로 최적화된 PSF 패턴을 사용하여 영상을 복원한 결과 기존에 사용된 방법에 비해 주관적 화질이 향상됨을 확인할 수 있다.

  • PDF

Video Motion Deblurring Using Adjacent Unblurred Frame (블러가 발생하지 않은 인접한 프레임을 이용한 동영상 디블러링 기법)

  • Lee, Dong-Bok;Jeong, Shin-Cheol;Choi, Ik-Hyun;Song, Byung-Cheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.53-54
    • /
    • 2011
  • 본 논문에서 우리는 동영상에서 인접한 블러되지 않은 참조 프레임을 이용하여 모션 블러를 제거하는 기법을 제안한다. 기존의 디블러링 방법들은 주로 단일 영상을 이용한 방법들로 정확한 커널을 예측하는 것과 원본 영상에 준하는 영상을 복원하는 것에 한계가 존재한다. 하지만 동영상에서 부분적인 프레임에만 블러가 발생한 특수한 경우에는 인접한 위치에 존재하는 블러되지 않은 프레임을 활용하는 것이 가능하다. 제안하는 방법은 블러된 프레임과 인접한 위치에 존재하는 블러되지 않은 프레임 사이에 움직임을 추정하고, 움직임 보상된 영상을 이용하여 커널을 추정한다. 또한 움직임 오차에 따른 잔여 오차 성분에 대해서만 디컨벌루션을 적용하여 물결현상이 억제된 최종적인 결과 영상을 생성한다. 실험 결과는 제안한 방법이 기존의 디블러링 기법에 비해 에지 부분을 잘 복원시키면서 물결현상은 감소된 보다 우수한 디블러링 결과를 가져오는 것을 보여준다.

  • PDF

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

A Genetic Programming Approach to Blind Deconvolution of Noisy Blurred Images (잡음이 있고 흐릿한 영상의 블라인드 디컨벌루션을 위한 유전 프로그래밍 기법)

  • Mahmood, Muhammad Tariq;Chu, Yeon Ho;Choi, Young Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • Usually, image deconvolution is applied as a preprocessing step in surveillance systems to reduce the effect of motion or out-of-focus blur problem. In this paper, we propose a blind-image deconvolution filtering approach based on genetic programming (GP). A numerical expression is developed using GP process for image restoration which optimally combines and exploits dependencies among features of the blurred image. In order to develop such function, first, a set of feature vectors is formed by considering a small neighborhood around each pixel. At second stage, the estimator is trained and developed through GP process that automatically selects and combines the useful feature information under a fitness criterion. The developed function is then applied to estimate the image pixel intensity of the degraded image. The performance of developed function is estimated using various degraded image sequences. Our comparative analysis highlights the effectiveness of the proposed filter.