This paper proposes a new robust motion deblurring filter using the inertial sensor measurements for strapdown image IR applications. With taking the PSF measurement error into account, the motion blurred image is modeled by the linear uncertain state space equation with the noise corrupted measurement matrix and the stochastic parameter uncertainty. This motivates us to solve the motion deblurring problem based on the recently developed robust least squares estimation theory. In order to suppress the ringing effect on the deblurred image, the robust least squares estimator is slightly modified by adoping the ridge-regression concept. Through the computer simulations using the actual IR scenes, it is demonstrated that the proposed algorithm shows superior and reliable motion deblurring performance even in the presence of time-varying motion artifact.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권2호
/
pp.855-870
/
2019
In this paper, an adaptive iterative algorithm is proposed for motion deblurring by using the salient intensity prior. Based on the observation that the salient intensity of the clear image is sparse, and the salient intensity of the blurred image is less sparse during the image blurring process. The salient intensity prior is proposed to enforce the sparsity of the distribution of the saliency in the latent image, which guides the blind deblurring in various scenarios. Furthermore, an adaptive iteration strategy is proposed to adjust the number of iterations by evaluating the performance of the latent image and the similarity of the estimated blur kernel. The negative influence of overabundant iterations in each scale is effectively restrained in this way. Experiments on publicly available image deblurring datasets demonstrate that the proposed algorithm achieves state-of-the-art deblurring results with small computational costs.
본 논문에서는 스트랩다운 영상탐색기 개발을 위해 각속도계 정보를 이용한 실용적인 움직임 훼손영상 복원 필터링 기법을 제안한다. 각속도계 편향오차가 움직임 훼손을 기술하기 위한 점확산 함수 파라미터의 불확실성으로 작용한다는 점에 착안하여, 이를 놈 제한조건을 만족하는 파라미터 불확실성으로 가정한 후 움직임 훼손 영상을 불확정 선형 상태 공간 방정식으로 모델링한다. 각속도계 편향오차에 의한 파라미터 불확실성 행렬이 놈 제한 조건을 만족한다는 가정 하에, 순환 선형 강인 칼만필터에 기반한 움직임 훼손영상 복원필터가 설계된다. 실제 IR 영상을 이용하여 제안된 영상훼손 복원 필터가 각속도계 편향 오차가 존재하는 상황에서도 신뢰할만한 영상복원 성능을 제공함을 확인한다.
본 논문은 한 장의 영상으로부터 균일 모션 블러를 빠르게 제거하는 방법을 제시한다. 한 장의 영상으로부터 모션 블러를 제거하는 기존의 방법들은 주로 전변량(total variation)이나 자연 영상 통계(natural image statistics)를 이용하였다. 반면 본 논문이 제시하는 방법은 양방향 필터(bilateral filter)와 쇼크 필터(shock filter), 그리고 영상 그레디언트(gradient)의 조작을 통해 선명한 에지를 예측하고, 이를 통해 모션 블러를 추정한다. 본 논문이 제시하는 선명한 에지 예측 기법을 통해 적은 계산량으로 효율적으로 블러를 추정할 수 있다. 실험결과를 통해 본 논문이 제시하는 방법이 넓고 복잡하게 블러된 영상을 효과적이고 빠르게 복원할 수 있음을 볼 수 있다.
본 논문은 모바일 단말기에 탑재된 카메라를 이용하여 정지영상을 획득할 때 발생할 수 있는 blur현상을 3축 가속도 센서를 이용하여 실시간 보정 할 수 있는 방법을 제안한다. Blur현상은 획득한 이미지에서 발생하는 번짐 효과이다. 소형의 모바일 단말기는 사용자의 미세한 손 떨림에도 크게 흔들릴 수 있기 때문에 blur현상이 크게 나타나며, 이를 적절하게 보정할 수 있는 알고리즘이 필요하다. 본 논문에선 3축 가속도센서를 진자운동에 적용하여 출력결과의 신뢰성을 확보하였고, blur현상을 Uniform 분포와 Gaussian 분포로 모델링하였다. 실험을 통하여 실제 blur 현상이 Non-Gaussian 형태로 모델링됨을 확인하였고, 이 blur모델의 역과정인 deblurring 특성함수를 설계하였다. 이 특성함수에 3축 가속도센서에서 발생하는 미세한 떨림 정보를 적용하여 실험 이미지를 deblurring한 결과, 이미지 blur현상을 적절하게 보정할 수 있었다.
동영상 촬영 시 급격한 카메라의 흔들림은 의도하지 않은 번짐 현상을 발생시켜 동영상의 품질을 낮추는 원인이 된다. 따라서 본 논문에서는 동영상의 품질을 높이기 위해 동영상에서 카메라 흔들림으로 인해 발생한 번짐 현상을 제거하는 방법을 제안한다. 제안하는 방법은 매 프레임 별로 이루어진다. 각 프레임마다 이전 프레임과 현재 프레임, 다음 프레임을 이용하여 카메라 움직임을 계산한다. 그리고 카메라의 움직임을 바탕으로 점 확산 함수를 계산하고 프레임을 패치 단위로 쪼개어 패치별 번짐 현상을 제거한다. 이때 품질을 높이기 위하여 번짐 영상으로부터 외곽선을 예측하는 방법을 사용한다. 번짐 현상이 제거된 패치는 다시 하나의 프레임으로 합한다. 실험 결과를 통해 제안하는 방법이 동영상에서의 카메라 흔들림으로 인한 번짐 현상을 효과적으로 제거함을 확인하였다.
본 논문에서는 객체의 모션 블러(motion blur)를 포함하고 있는 다중시점(multi-view) 영상을 이용하여 객체의 3차원 형상 복원시 영상을 효과적으로 디블러링(deblurring)하여 3차원 형상 복원의 정확도를 높이는 기법을 제안한다. 다중시점 영상의 디블러링 수행시 다중시점 영상 간의 기하학적 상관관계를 고려하여 보다 정확히 PSF (point spread function)를 구함으로써 결과적으로 보다 정확한 3차원 형상 복원을 수행할 있다. 제안하는 기법은 각각의 입력 영상에서 초기 2D PSF를 독립적으로 구한 후, 3차원 PSF의 후보를 각 입력 영상의 카메라 행렬에 의해 투영했을 때 이들에 전역적으로 가장 잘 부합하는 3D PSF를 탐색한다. 3D PSF는 방향과 밀도 성분으로 구성되며 이는 결국 3차원 공간에서의 물체의 움직임 궤적과 동일하다. 추정된 3D PSF는 각 영상으로 다시 투영되어 각 영상의 2D PSF로 추정되고, 이에 의해 각 영상의 디블러링을 수행한다. 본 논문에서 제안하는 기법을 이용하여 다중시점 영상 디블러링과 3차원 형상 복원을 수행한 결과, 단일 영상만을 이용하여 복원할 경우에 비하여 디블러링과 3차원 형상 복원 모두 현저히 개선된 결과를 확인할 수 있다.
시차 기반 영상처리에 대한 연구들이 증가함에 따라 저해상도 및 모션 블러된 라이트필드 영상을 복원하는 연구는 필수적이 되었다. 이러한 기법들은 라이트필드 영상 향상 과정으로 알려져 있으나 두 개 이상의 문제를 동시에 해결하는 기존의 연구는 거의 존재하지 않는다. 본 논문에서는 라이트필드 공간 영역 초해상도 복원과 모션 블러 제거를 동시 수행하는 프레임워크를 제안한다. 특히, 저해상도 및 6-DOF 모션 블러된 라이트필드 데이터셋으로 훈련하는 간단한 네트워크를 생성한다. 또한 성능을 향상하기 위해 생성적 적대 신경망의 지역 영역 최적화 기법을 제안하였다. 제안한 프레임워크는 정량적, 정성적 측정을 통해 평가하고 기존의 state-of-the-art 기법들과 비교하여 우수한 성능을 나타냄을 보인다.
Cho 등의 균일 모션 블러 제거 알고리듬은 영상 내 외곽선 영역을 선명하게 복원하지 못한다는 문제점이 있다. 이러한 문제점을 극복하기 위해 본 논문에서는 한 장의 정지 영상에서 발생하는 블러 (Blur)현상을 블러된 계단형 신호를 뚜렷한 외곽선으로 복원해주는 쇼크 필터 (Shock filter)와 영상에서 특징을 추출하여 학습하는 합성곱 신경망 (Convolutional Neural Network: CNN)을 이용하여 선명한 영상을 복원하고 이 영상으로부터 균일 모션 (Uniform motion) 블러를 측정하여 영상 내 블러 현상을 제거하는 효과적인 알고리듬을 제안하고자 한다. 제안된 알고리듬은 쇼크 필터와 합성곱 신경망을 이용하여 선명한 영상을 복원함으로써 기존 알고리듬의 단점을 개선하였다. 실험 결과를 통해 제안하는 알고리듬이 기존 알고리듬에 비해 객관적 및 주관적인 평가에서 우수한 복원 성능을 나타냄을 확인하였다.
We present a novel deep learning architecture for obtaining a latent image from a single blurry image, which contains dynamic motion blurs through object/camera movements. The proposed architecture consists of two sub-modules: blur image restoration and optical flow estimation. The tasks are highly related in that object/camera movements make cause blurry artifacts, whereas they are estimated through optical flow. The ablation study demonstrates that training multi-task architecture simultaneously improves both tasks compared to handling them separately. Objective and subjective evaluations show that our method outperforms the state-of-the-arts deep learning based techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.