• Title/Summary/Keyword: Motion compensation error

Search Result 154, Processing Time 0.026 seconds

Motion Error Compensation Method for Hydrostatic Tables Using Actively Controlled Capillaries

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • To compensate for the motion errors in hydrostatic tables, a method to actively control the clearance of a bearing corresponding to the amount of error using actively controlled capillaries is introduced in this paper. The design method for an actively controlled capillary that considers the output rate of a piezo actuator and the amount of error that must be corrected is described. The basic characteristics of such a system were tested, such as the maximum controllable range of the error, micro-step response, and available dynamic bandwidth when the capillary was installed in a hydrostatic table. The tests demonstrated that the maximum controllable range was $2.4\;{\mu}m$, the resolution was 27 nm, and the frequency bandwidth was 5.5 Hz. Simultaneous compensation of the linear and angular motion errors using two actively controlled capillaries was also performed for a hydrostatic table driven by a ballscrew and a DC servomotor. An iterative compensation method was applied to improve the compensation characteristics. Experimental results showed that the linear and angular motion errors were improved to $0.12{\mu}m$ and 0.20 arcsec, which were about $1/15^{th}$ and $1/6^{th}$ of the initial motion errors, respectively. These results confirmed that the proposed compensation method improves the motion accuracy of hydrostatic tables very effectively.

Improvement of Motion Accuracy Using Active Controlled Capillary in Hydrostatic Table (능동제어모세관을 이용한 유정압테이블의 운동정도 향상)

  • Park, C.H.;Song, Y.C.;Lee, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.114-120
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clearance of table is controlled corresponding to the amount of eror with the actively controlled variable capillary, named as ACC. In previous paper, through the basic test, it was confirmed that by the use of ACC, the error motion within 2.7$\mu$ m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the frequency bandwidth of 5.5Hz, structurally. In this paper, we performed practical compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy, iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error, the linear and angular motion error are improved upto 0.25$\mu$ m and 0.4arcsec, which are about 1/10 and 1/3 of the non-compensated motion errors respectively.

  • PDF

Straightness Measurement Error Compensation of the Laser Interferometer (레이저 간섭계의 진직도 측정오차 보상)

  • 김경호;김태호;송창규;이후상;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.114-118
    • /
    • 2001
  • HP Laser Interferometer Measurement System[HP5529A] is one of the most powerful equipment for measurement of the motion accuracy. The straightness measurement system of the HP5529A is composed of wollastone prism and reflector. In this system, straightness error is measured by relative lateral motion between prism and reflector. But rotating motion of prism or reflector as moving optic causes not real straightness error but additive straightness error. Especially unwanted straightness error as this becomes very large when reflector is used as moving optic and an interval between reflector and prism is distant. In this paper, the compensation method is proposed for removing additive error and experiment is carried out for theoretical verification.

  • PDF

Motion Compensation Based on Signal Processing Method for Airborne SAR

  • Song, Won-Gyu;Shin, Hee-Sub;Lee, Ho-Jin;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1199-1201
    • /
    • 2005
  • In the synthetic aperture radar (SAR) system, the motion error is the main phase error sources and the motion compensation is very important. The phase gradient autofocus (PGA) is a state of art technique for phase error correction of SAR. It exploits the redundancy of the phase-error information among range bins by selecting the strongest scatter for each range bin and synthesizes them. The motivation of this paper is based on the observation that the redundancy of phase error is also among the cross-range direction. Moreover, the proposed method applies the weighting function to better utilize the phase error information. The validity of the proposed scheme for PGA is tested with some numerical simulation.

  • PDF

능동제어모세관을 이용한 유정압테이블의 운동정도 향상

  • 송영찬;박천홍;김수태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.250-256
    • /
    • 1997
  • For compensating the error motion of hydrostatic tables, we have introduced a way that the clarance of table is actively controlled corresponding to the amount of error with the nariable capillary,anmed as ACC. In previous paper,through the basic test, it was confirmed that by the use of ACC,the error motion within 2.7 .mu.m of a hydrostatic table could be compensated with the resolution of 27nm, 1/100 contollable range, and with the freqency bandwidth of 5.5Hz structurally. In this paper,we performed practital compensation of the linear and angular motion error of hydrostatic table using ACC. For improving the compensated motion accuracy,iterative control method is put into the control system. The experimental results show that by the simultaneous compensation of error,the linear and angular motion error are improved upto 0.25 .mu.m and 0.4arcsec,which are about 1/10 and 1/3 of the non-compensated motion errors respectively.

Compensation of Five DOF Motion Errors in a Ultra Precision Hydrostatic Table Using the Active Controlled Capillaries (능동제어모세관을 이용한 초정밀 유정압테이블의 5 자유도 운동 오차 보정)

  • Park C.H.;Oh Y.J.;Lee H.;Lee D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.769-772
    • /
    • 2005
  • Five DOF motion errors of a hydrostatic bearing table driven by the coreless type linear motor were compensated utilizing the active controlled capillaries in this study. Horizontal linear motion and yaw error were simultaneously compensated using two active controlled capillaries and vertical linear motion, pitch and yaw error were also simultaneously compensated using three active controlled capillaries. By the compensation, horizontal linear motion accuracy and yaw were improved from 0.16 ${\mu}m$ and 1.96 arcsec to 0.02 ${\mu}m$ and 0.03 arcsec. Vertical linear motion accuracy, pitch and roll were also largely improved from 0.18 ${\mu}m$, 2.26 arcsec and 0.14 arcsec upto 0.03 ${\mu}m$, 0.07 arcsec and 0.02 arcsec. The compensated motion errors were within the range of measuring repeatability which was ${\pm}0.02\;{\mu}m$ in the linear motion and ${\pm}0.05$ arcsec in the angular motion. From these results, it is found that the motion error compensation method utilizing the active controlled capillaries are very effective to improve the five motion accuracies of the hydrostatic bearing tables.

  • PDF

Compensation of the Straightness Measurement Error in the Laser Interferometer (레이저 간섭계의 진직도 측정오차 보상)

  • Khim Gyungho;Keem Tae-Ho;Lee Husang;Kim Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.69-76
    • /
    • 2005
  • The laser interferometer system such as HP5529A is one of the most powerful equipment fur measurement of the straightness error in precision stages. The straightness measurement system, HP5529A is composed of a Wollaston prism and a reflector. In this system, the straightness error is defined as relative lateral motion change between the prism and the reflector and computed from optical path difference of two polarized laser beams between these optics. However, rotating motion of the prism or the reflector used as a moving optic causes unwanted straightness error. In this paper, a compensation method is proposed for removing the unwanted straightness error generated by rotating the moving optic and an experiment is carried out for theoretical verification. The result shows that the unwanted straightness error becomes very large when the reflector is used as the moving optic and the distance between the reflector and the prism is far. Therefore, the prism must be generally used as the moving optic instead of the reflector so as to reduce the measurement error. Nevertheless, the measurement error must be compensated because it's not a negligible error if a rotating angle of the prism is large. In case the reflector must be used as the moving optic, which is unavoidable when the squareness error is measured between two axes, this compensation method can be applied and produces a better result.

A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar (2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터)

  • Kim, Byung-Doo;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.

Design and Implementation of Error Concealment Algorithm using Data Hiding and Adaptive Selection of Adjacent Motion Vectors (정보숨김과 주변 움직임 벡터의 적응적 선택에 의한 에러은닉 알고리즘의 설계 및 구현)

  • Lee, Hyun-Woo;Seong, Dong-Su;Lee, Keon-Bae
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.607-614
    • /
    • 2006
  • In this paper, we propose an error resilience video coder which uses a hybrid error concealment algorithm. Firstly, the algorithm uses the error concealment with data hiding. If the hiding information is lost, the motion vector of lost macroblock is computed with adaptive selection of adjacent motion vectors and OBMC (Overlapped Block Motion Compensation) is applied with this motion vector. We know our algorithm is more effective in case of continuous GOB. The results show more significant improvement than many temporal concealment methods such as MVRI (Motion Vector Rational Interpolation) or existing error concealment using data hiding.

A Method of Boresight Error Compensation for Missile Radome (유도탄용 레이돔 시선각 오차 보정 기법)

  • Kim, Gwang-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.56-63
    • /
    • 2005
  • The radome boresight error degrades the microwave seeker ability and the missile guidance performance. It increases the miss distance, also. This paper propose a method of radome boresight error measurement and compensation. The compensation method consist of radome analysis and radome compensation. In the radome analysis stage, we can know that the electromagnetic characteristics distorted by radome. In the compensation stage, the look-up table is built and used for compensation. The test uses a FMS(Flight motion simulator) and adjusts the FMS setup error for more accuracy. The result shows that not using an elaborate radome measurement equipment, the radome boresight error is well compensated easily.