• Title/Summary/Keyword: Motion capture analysis

Search Result 213, Processing Time 0.023 seconds

Sloshing Analysis in Rectangular Tank with Porous Baffle (투과성 내부재가 설치된 사각형 탱크내의 슬로싱 해석)

  • Cho, IL-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • An analytical model of liquid sloshing is developed to consider the energy-loss effect through a partially submerged porous baffle in a horizontally oscillating rectangular tank. The nonlinear boundary condition at the porous baffle is derived to accurately capture both the added inertia effects and the energy-loss effects from an equivalent non-linear drag law. Using the eigenfunction expansion method, the horizontal hydrodynamic force (added mass, damping coefficient) on both the wall and baffle induced by the fluid motion is assessed for various combinations of porosity, submergence depth, and the tank's motion amplitude. It is found that a negative value for the added mass and a sharp peak in the damping curve occur near the resonant frequencies. In particular, the hydrodynamic force and free surface amplitude can be largely reduced by installing the proper porous baffle in a tank. The optimal porosity of a porous baffle is near P=0.1.

Parametric roll of container ships in head waves

  • Moideen, Hisham;Falzarano, Jeffrey M.;Sharma, S.Abhilash
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.239-255
    • /
    • 2012
  • Analysis of ship parametric roll has generally been restricted to simple analytical models and sophisticated time domain simulations. Simple analytical models do not capture all the critical dynamics while time-domain simulations are often time consuming to implement. The model presented in this paper captures the essential dynamics of the system without over simplification. This work incorporates various important aspects of the system and assesses the significance of including or ignoring these aspects. Special consideration is given to the fact that a hull form asymmetric about the design waterline would not lead to a perfectly harmonic variation in metacentric height. Many of the previous works on parametric roll make the assumption of linearized and harmonic behaviour of the time-varying restoring arm or metacentric height. This assumption enables modelling the roll motion as a Mathieu equation. This paper provides a critical assessment of this assumption and suggests modelling the roll motion as a Hills equation. Also the effects of non-linear damping are included to evaluate its effect on the bounded parametric roll amplitude in a simplified manner.

Development of Personalized Exercise Prescription System based on Kinect Sensor (Kinect Sensor 기반의 개인 맞춤형 운동 처방 시스템 개발)

  • Woo, Hyun-Ji;Yu, Mi;Hong, Chul-Un;Kwon, Tae-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.593-605
    • /
    • 2022
  • The purpose of this study is to investigate the personalized treacmill exercise analysis using a smart mirror based on Kinect sensor. To evaluate the performance of the development system, 10 health males were used to measure the range of the hip joint, knee joint, and ankle joint using a smart mirror when walking on a treadmill. For the validity and reliability of the development system, the validity and reliability were analyzed by comparing the human movement data measured by the Kinect sensor with the human movement data measured by the infrared motion capture device. As a result of validity verification, the correlation coefficient r=0.871~0.919 showed a high positive correlation, and through linear regression analysis, the validity of the smart mirror system was 88%. Reliability verification was conducted by ICC analysis. As a result of reliability verification, the correlation coefficient r=0.743~0.916 showed high correlation between subjects, and the consistency for repeated measurement was also very high at ICC=0.937. In conclusion, despite the disadvantage that Kinect sensor is less accurate than the motion capture system, Kinect is it has the advantage of low price and real-time information feedback. This means that the Kinect sensor is likely to be used as a tool for evaluating exercise prescription through human motion measurement and analysis.

The Development of Interactive Ski-Simulation Motion Recognition System by Physics-Based Analysis (물리 모델 분석을 통한 상호 작용형 스키시뮬레이터 동작인식 시스템 개발)

  • Jin, Moon-Sub;Choi, Chun-Ho;Chung, Kyung-Ryul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • In this research, we have developed a ski-simulation system based on a physics-based simulation model using Newton's second law of motion. Key parameters of the model, which estimates skier's trajectory, speed and acceleration change due to skier's control on ski plate and posture changes, were derived from a field test study performed on real ski slope. Skier's posture and motion were measured by motion capture system composed of 13 high speed IR camera, and skier's control and pressure distribution on ski plate were measured by acceleration and pressure sensors attached on ski plate and ski boots. Developed ski-simulation model analyzes user's full body and center of mass using a depth camera(Microsoft Kinect) device in real time and provides feedback about force, velocity and acceleration for user. As a result, through the development of interactive ski-simulation motion recognition system, we accumulated experience and skills based on physics models for development of sports simulator.

Analysis and Design of a Wave Energy Conversion Buoy

  • Oh, Jin-Seok;Bae, Soo-Young;Jung, Sung-Young
    • Journal of Navigation and Port Research
    • /
    • v.32 no.9
    • /
    • pp.705-709
    • /
    • 2008
  • In the sea various methods have been conducted to capture wave energy which include the use of pendulums, pneumatic devices, etc. Floating devices, such as a cavity resonance device take advantages of both the water motion and the wave induced motions of the floating body itself. The wave energy converter is known commercially as the WAGB(Wave Activated Generator Buoy) and is used in some commercially available buoys to power navigation aids such as lights and horns. This wave energy converter consists of a circular flotation body which contains a vertical water column that has free communication with the sea. A theoretical analysis of this power generated by a pneumatic type wave energy converter is performed and the results obtained from the analysis are used for a real wave energy converter buoy. This paper is shown to have an optimum value for which maximum power is obtained at a given resonant wave period Also, the length of the internal water column corresponds to that of the water mass in the water column. If designed properly, wave energy converter can take advantage not only of the cavity resonance, but also qf the heaving motion of the buoy. Finally, simulation is performed with a LabVIEW program and the simulation results are applied to a wave energy simulator for modifying design data for a wave energy converter.

Biomechanical Analysis of Throw Movement to Second Base in High School Elite Baseball Catchers (고등학교 야구 포수의 2루 송구 동작에 대한 운동역학적 분석)

  • Kim, Sung Yong;Park, Jong Chul;Byun, Kyung Seok;Baek, Hee Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.165-172
    • /
    • 2020
  • Objective: The purpose of this study was to provide quantitative and objective data of throwing movement in baseball catcher through biomechanical analysis. Method: Eight high school baseball catchers (age: 17.3±0.7 yrs, height: 175.3±4.5 cm, weight: 82.5±9.0 kg, Career: 7.4±2.1 yrs) participated and 3-dimentional motion capture system and electromyography (EMG) were used in this study. Results: The maximum center of mass position displacement was observed in forward direction. The linear velocity magnitude of the upper extremity segments were showed as "wrist>elbow>shoulder" which is indicative of kinematic chain. For kinetic EMG data, we also observed the greater muscle activation in the left brachioradial and erector spine muscles muscle that during throwing movement. Conclusion: We expect that biomechanical data from this study will provide important training implications to baseball coaches and trainers in order to effectively train their baseball catchers.

Development of a New Analysis Method of Fluid Film for Efficient Estimate of the Moving Characteristics of Hydrostatic Bearings (유정압베어링 운동특성의 효과적인 예측을 위한 새로운 유막 해석방법의 개발)

  • 전상렬;김권희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.166-174
    • /
    • 2003
  • Hydrostatic bearings are widely used in precision machines due to their high motion guide accuracy, low friction and high load carrying capacity. It is very useful to estimate the moving characteristics of hydrostatic bearings in the design stage. A new method is suggested for the analysis of fluid film in hydrostatic bearings. A combined mesh of 8 node solid elements with negligible deformation resistance and spring-dashpot elements is used in conjunction with the user subroutine of ABAQUS to represent the fluid film. The mesh can be used to capture the deformation of the bearing structure as well as the varying properties of fluid film. Analysis results from the finite element model are compared with theoretical solutions, results from FLUENT analysis and some previous works. With this method, static and dynamic analyses of the system containing the bearings can be performed efficiently.

Motion Analysis of Head and Neck of Human Volunteers in Low-Speed Rear Impact (저속 후방 추돌 자원자 실험을 통한 두부와 경부의 동작분석)

  • Hong, Seong Woo;Park, Won-Pil;Park, Sung-Ji;You, Jae-Ho;Kong, Sejin;Kim, Hansung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.37-43
    • /
    • 2012
  • The purpose of this research is to obtain and analyze dynamic responses from human volunteers for the development of the human-like mechanical or mathematical model for Korean males in automotive rear collisions. This paper focused on the introduction to a low-speed rear impact sled test involving Korean male subjects, and the accumulation of the motion of head and neck. A total of 50 dynamic rear impact sled tests were performed with 50 human volunteers, who are 30-50 year-old males. Each subject can be involved in only one case to prevent any injury in which he was exposed to the impulse that was equivalent to a low-speed rear-end collision of cars at 5-8 km/h for change of velocity, so called, ${\Delta}V$. All subjects were examined by an orthopedist to qualify for the test through the medical check-up of their necks and low backs prior to the test. The impact device is the pendulum type, tuned to simulate the crash pulse of a real vehicle. All motions and impulses were captured and measured by motion capture systems and pressure sensors on the seat. Dynamic responses of head and T1 were analyzed in two cases(5 km/h, 8 km/h) to compare with the results in the previous studies. After the experiments, human subjects were examined to check up any change in the post medical analysis. As a result, there was no change in MRI and no injury reported. Six subjects experienced a minor stiffness on their back for no more than 2 days and got back to normal without any medical treatment.

Human Motion Analysis for Designing Social Robots Based on Cultural Difference (문화적 차이를 중심으로 본 사회적 로봇 디자인을 위한 인간 동작의 분석)

  • Yang, Eui-Jung;Hwang, Won-Il
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.2
    • /
    • pp.133-143
    • /
    • 2012
  • The study on social robots has been actively conducted in the robot research community. In the area of robot design, however, there are few studies regarding robot motions that are one of the methods for interaction between humans and robots. This is a preliminary study to find preferred human motions that can be applied to social robots. We conducted a two-phased empirical study about preferred human motions. In the first phase, four representative human motions, such as 'greeting', 'I don't know', 'positive answer', and 'giving', were captured through 28 body makers and video recording. 10 young and 6 elderly Singaporeans participated in the motion capture process. In the second phase, the communication efficiency, emotion, and satisfaction of the human motions recorded in the first phase were measured by a questionnaire and 31 young Koreans, 35 young Singaporeans participated to investigate cultural differences. We drew the conclusion that motions used in the same culture are efficient in communication and also give friendliness and satisfaction. In addition, regardless of user's culture, young people's motions and female motions were preferred in terms of communication efficiency, emotional aspect, satisfaction.

A Comparative Analysis of Biomechanical Factors and Premotor Time of Body Muscles between Elite College and Amateur Baseball Players during the Baseball Batting Motion

  • Lim, Young-Tae;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.205-211
    • /
    • 2016
  • Purpose: The aim of this study was to analyze biomechanical factors and PMT (premotor time) of body muscles between elite college and amateur baseball players during the baseball batting motion. Method: Kinematic and electromyographic data were obtained for 10 elite college baseball players and 10 amateur baseball players who participated in this study. All motion capture data were collected at 200 Hz using 8 VICON cameras and the PMT of muscles was recorded using a Delsys Trigno wireless system. The peak mean bat speed and the peak mean angular velocities of trunk, pelvis, and bat with PMT of 16 body muscles were computed. These kinematic and PMT data of both groups were compared by independent t-tests (p < .05). Results: The pelvis, trunk, and bat showed a sequence of angular velocity value during baseball batting. The PMTs of right tibialis anterior, left gastrocnemius, external oblique, and erector spinae were significantly different between the two groups. Conclusion: The PMT of body muscles was related to the shifting of body and rotation of the pelvis and the trunk segment, and this action can be considered the coordinated muscle activity of the lower and upper body.