• Title/Summary/Keyword: Motion builder

Search Result 5, Processing Time 0.02 seconds

Generation and Animation of Optimal Robot Joint Motion data using Captured Human Motion data (인체모션 데이터 획득 장치와 최적화 기법을 사용한 로봇운동 데이터 생성과 애니메이션)

  • Bae, Tae Young;Kim, Young Seog
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.558-565
    • /
    • 2013
  • This paper describes a whole-body (human body's) motion generation scheme for an android robot that uses motion capture device and a nonlinear constrained optimization method. Because the captured motion data are based on global coordinates and the actors have different heights and different upper-lower body ratios, the captured motion data cannot be used directly for a humanoid robot. In this paper, we suggest a method for obtaining robot joint angles, which allow the resultant robot motion to be as close as possible to the captured human motion data, by applying a nonlinear constrained optimization method. In addition, the results are animated to demonstrate the similarity of the motions.

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.

Liberal Education for Engineers and the Case of Edison (에디슨의 사례를 통한 공학소양교육의 탐색)

  • Song, Sung-Soo
    • Journal of Engineering Education Research
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • This paper examines major activities of Thomas Edison as an example to liberal education for engineers using researches in the history of technology. Edison, as a system builder, developed almost everything necessary to use electric light in the aspects of technology and management. On the contrary, Edison took a conservative stance to new alternating current technology in the case of current war. Edison developed phonograph and motion pictures but didn't understand the meaning of mass culture grown up based on his inventions. This study not only provides an illustrative content to the liberal education for engineers, but also helps to grope for the dynamic character of technological innovation and the desirable features of engineers.

  • PDF

A STUDY ON THE CHUMSUNGDAE'S FIGURES AND FUNCTIONS (첨성대 수치와 역할에 대한 연구)

  • Kim, Kwang-Tae
    • Publications of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.25-36
    • /
    • 2013
  • Chumsungdae is an ancient astronomical observatory whose main role was doing 'chunmoon'. It was administrate by a royal advisory agency on state affairs. The observers observed the heaven on the observatory platform, recorded peculiar events, and watched and interpreted the signs displayed in the heaven. Chumsungdae is an stonemasonry which represents almanac principles with its peculiar shapes and the numbers of strata and stones. The numbers were thoroughly invented to match exactly the almanac constants. Chumsungdae is comprised largely of three main parts, namely the square base, the stratified cylindrical body, and the top #-shaped stonework, and the total number of stones is 404. The number of the strata (27) and the height of the cylindrical body (27 尺) stand for the days in a sidereal month (27.3 days), which implies that the motion of the Moon with respect to the stars was given more priority than to the Sun at that time of geocentricism. And the cylindrical body was thoroughly designed to consist of 365 stones, which is of course the number of days in a solar year. In addition, there are 12 strata each under and above the south entrance and this in sum makes the 24 divisions of the year. Also there is 182 stones below the 13th stratum and this represents the number of days in the winter ~ summer solstice period, and the rest 183 stones the vice versa. The #-shaped top stonework was aligned in such a way that one of the diagonals points the direction of sunrise on the winter solstice. The square base also layed with the same manner. The south entrance was built 16 degrees SE, and the upright direction of the right pillar stone coincides with the meridian circle. This was a kind of built-in standard meridian circle facilitating the observations. In a symbolic sense, Chumsungdae was thought as the tunnel reaching the heaven, where the observers wished to be enlightened with the signs and inspirations in need. With the craftsmanship and skill, the builder reinforced the stratified cylindrical body with two sets of #-shaped beam stones, piercing at a right angle at 19th ~ 20th and 25th ~ 26th strata. Likewise, by placing the double #-shaped stonework with 8 beam stones on the platform of the observatory, both the stability of the stonemasonry and a guard rail for the nightly observers were securely provided.

Technical-note : Real-time Evaluation System for Quantitative Dynamic Fitting during Pedaling (단신 : 페달링 시 정량적인 동적 피팅을 위한 실시간 평가 시스템)

  • Lee, Joo-Hack;Kang, Dong-Won;Bae, Jae-Hyuk;Shin, Yoon-Ho;Choi, Jin-Seung;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • In this study, a real-time evaluation system for quantitative dynamic fitting during pedaling was developed. The system is consisted of LED markers, a digital camera connected to a computer and a marker detecting program. LED markers are attached to hip, knee, ankle joint and fifth metatarsal in the sagittal plane. Playstation3 eye which is selected as a main digital camera in this paper has many merits for using motion capture, such as high FPS (Frame per second) about 180FPS, $320{\times}240$ resolution, and low-cost with easy to use. The maker detecting program was made by using Labview2010 with Vision builder. The program was made up of three parts, image acquisition & processing, marker detection & joint angle calculation, and output section. The digital camera's image was acquired in 95FPS, and the program was set-up to measure the lower-joint angle in real-time, providing the user as a graph, and allowing to save it as a test file. The system was verified by pedalling at three saddle heights (knee angle: 25, 35, $45^{\circ}$) and three cadences (30, 60, 90 rpm) at each saddle heights by using Holmes method, a method of measuring lower limbs angle, to determine the saddle height. The result has shown low average error and strong correlation of the system, respectively, $1.18{\pm}0.44^{\circ}$, $0.99{\pm}0.01^{\circ}$. There was little error due to the changes in the saddle height but absolute error occurred by cadence. Considering the average error is approximately $1^{\circ}$, it is a suitable system for quantitative dynamic fitting evaluation. It is necessary to decrease error by using two digital camera with frontal and sagittal plane in future study.