• Title/Summary/Keyword: Motion adaptation

Search Result 107, Processing Time 0.024 seconds

Smart Wrist Band Considering Wrist Skin Curvature Variation for Real-Time Hand Gesture Recognition (실시간 손 제스처 인식을 위하여 손목 피부 표면의 높낮이 변화를 고려한 스마트 손목 밴드)

  • Yun Kang;Joono Cheong
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.18-28
    • /
    • 2023
  • This study introduces a smart wrist band system with pressure measurements using wrist skin curvature variation due to finger motion. It is easy to wear and take off without pre-adaptation or surgery to use. By analyzing the depth variation of wrist skin curvature during each finger motion, we elaborated the most suitable location of each Force Sensitive Resistor (FSR) to be attached in the wristband with anatomical consideration. A 3D depth camera was used to investigate distinctive wrist locations, responsible for the anatomically de-coupled thumb, index, and middle finger, where the variations of wrist skin curvature appear independently. Then sensors within the wristband were attached correspondingly to measure the pressure change of those points and eventually the finger motion. The smart wrist band was validated for its practicality through two demonstrative applications, i.e., one for a real-time control of prosthetic robot hands and the other for natural human-computer interfacing. And hopefully other futuristic human-related applications would be benefited from the proposed smart wrist band system.

Analysis of Statistical Properties of Propagation Errors in DCT Coefficient-Dropping Transcoder (DCT 계수 제거 트랜스코딩에서의 전파 왜곡의 통계적 특성 분석)

  • Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.12 no.6
    • /
    • pp.555-564
    • /
    • 2007
  • Discrete cosine transform (DCT) coefficient dropping is well recognized as an efficient rate adaptation transcoding in motion-compensated (MC)-DCT based MPEG-compressed videos. However, in this scheme, the errors incurred by the DCT coefficient-dropping are propagated and often result in significant visual quality degradation. This paper presents two propositions describing well the statistical properties of propagated errors. That is, we propose that the DCT error of the current frame is not correlated to the propagated errors of the previous frames. We also propose that the overall distortions in a given frame can be approximated as the sum of the DCT error of the current frame and the propagated errors from the previous frames. Then, it is shown that several computer simulations with different video sequences verify the effectiveness of the proposed statistical analyses.

Hierrachical manner of motion parameters for sports video mosaicking (스포츠 동영상의 모자익을 위한 이동계수의 계층적 향상)

  • Lee, Jae-Cheol;Lee, Soo-Jong;Ko, Young-Hoon;Noh, Heung-Sik;Lee Wan-Ju
    • The Journal of Information Technology
    • /
    • v.7 no.2
    • /
    • pp.93-104
    • /
    • 2004
  • Sports scene is characterized by large amount of global motion due to pan and zoom of camera motion, and includes many small objects moving independently. Some short period of sports games is thrilling to televiewers, and important to producers. At the same time that kinds of scenes exhibit exceptionally dynamic motions and it is very difficult to analyze the motions with conventional algorithms. In this thesis, several algorithms are proposed for global motion analysis on these dynamic scenes. It is shown that proposed algorithms worked well for motion compensation and panorama synthesis. When cascading the inter frame motions, accumulated errors are unavoidable. In order to minimize these errors, interpolation method of motion vectors is introduced. Affined transform or perspective projection transform is regarded as a square matrix, which can be factorized into small amount of motion vectors. To solve factorization problem, we preposed the adaptation of Newton Raphson method into vector and matrix form, which is also computationally efficient. Combining multi frame motion estimation and the corresponding interpolation in hierarchical manner enhancement algorithm of motion parameters is proposed, which is suitable for motion compensation and panorama synthesis. The proposed algorithms are suitable for special effect rendering for broadcast system, video indexing, tracking in complex scenes, and other fields requiring global motion estimation.

  • PDF

Interactive Motion Retargeting for Humanoid in Constrained Environment (제한된 환경 속에서 휴머노이드를 위한 인터랙티브 모션 리타겟팅)

  • Nam, Ha Jong;Lee, Ji Hye;Choi, Myung Geol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • In this paper, we introduce a technique to retarget human motion data to the humanoid body in a constrained environment. We assume that the given motion data includes detailed interactions such as holding the object by hand or avoiding obstacles. In addition, we assume that the humanoid joint structure is different from the human joint structure, and the shape of the surrounding environment is different from that at the time of the original motion. Under such a condition, it is also difficult to preserve the context of the interaction shown in the original motion data, if the retargeting technique that considers only the change of the body shape. Our approach is to separate the problem into two smaller problems and solve them independently. One is to retarget motion data to a new skeleton, and the other is to preserve the context of interactions. We first retarget the given human motion data to the target humanoid body ignoring the interaction with the environment. Then, we precisely deform the shape of the environmental model to match with the humanoid motion so that the original interaction is reproduced. Finally, we set spatial constraints between the humanoid body and the environmental model, and restore the environmental model to the original shape. To demonstrate the usefulness of our method, we conducted an experiment by using the Boston Dynamic's Atlas robot. We expected that out method can help the humanoid motion tracking problem in the future.

Estimation of Tibia Angle through Time-Varying Complementary Filtering and Gait Phase Detection (시변 상보필터와 보행상태 추정을 이용한 경골의 기울어짐 각도추정)

  • Song, Seok-ki;Woo, Hanseung;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.944-950
    • /
    • 2015
  • Recent studies on ankle-foot prostheses used for transtibial amputees have focused on the adaptation of the ankle angle of the prosthesis according to ground conditions. For adaptation to various ground conditions (e.g., incline, decline, and step conditions), ankle-foot prostheses should first recognize the ground conditions as well as the current human motion pattern. For this purpose, the ground reaction forces and orientation angle of the tibia provide fundamental information. The measurement of the orientation angle, however, creates a challenge in practice. Although various sensors, such as accelerometers and gyroscopes, can be utilized to measure the orientation angles of the prosthesis, none of these sensors can be solely used due to their intrinsic drawbacks. In this paper, a time-varying complementary filtering (TVCF) method is proposed to incorporate the measurements from an accelerometer and a gyroscope to obtain a precise orientation angle. The cut-off frequency of TVCF is adaptively determined according to the human gait phase detected by a fuzzy logic algorithm. The performance of the proposed method is verified through experiments.

GOP Adaptation Coding of H.264/SVC Based on Precise Positions of Video Cuts

  • Liu, Yunpeng;Wang, Renfang;Xu, Huixia;Sun, Dechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2449-2463
    • /
    • 2014
  • Hierarchical B-frame coding was introduced into H.264/SVC to provide temporal scalability and improve coding performance. A content analysis-based adaptive group of picture structure (AGS) can further improve the coding efficiency, but damages the inter-frame correlation and temporal scalability of hierarchical B-frame to different degrees. In this paper, we propose a group of pictures (GOP) adaptation coding method based on the positions of video cuts. First, the cut positions are accurately detected by the combination of motion coherence (MC) and mutual information (MI); then the GOP is adaptively and proportionately set by the analysis of MC in one scene. In addition, we propose a binary tree algorithm to achieve the temporal scalability of any size of GOP. The results for test sequences and real videos show that the proposed method reduces the bit rate by up to about 15%, achieves a performance gain of about 0.28-1.67 dB over a fixed GOP, and has the advantages of better transmission resilience and video summaries.

Effect of Bilateral Arm Movement on Brain and Muscle Activity in Chronic Stroke Patients (양손 운동이 만성 뇌졸중 환자의 뇌활성도와 근활성도에 미치는 영향)

  • Park, Joo-Hee;Lee, Sa-Gyeom
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSE: This study investigated the neurophysiological and behavioral adaptation during one or both hands movement in chronic stroke patients. METHODS: The study included sixteen hemiplegic stroke patients. Neurophysiological data (brain activation and muscle activation) were examined by electroencephalography (EEG) and electromyography (EMG), and behavioral adaptation was examined by wrist extension angle during wrist extension with one hand or both hands. Outcome variables of one hand or both hands were; mu rhythm of the EEG, EMG amplitude of wrist extensor and flexor muscles, and wrist angle of Myomotion 3D motion analysis. RESULTS: Our results revealed that wrist extension angle was significant increased during both hands movement compared to one hand movement (p<.05). Furthermore, in affected sensorimotor area, there was significant increase in the brain activation during both hands movement compared to one hand movement (p<.05). However, there was no significant different between one hand and both hands movement in muscle activation (p>.05). CONCLUSION: According to the findings of this experiment, bilateral arm movement improved brain activity on affected sensorimotor area and wrist extension angle. Therefore, we suggest that bilateral arm movement would positive effect on stroke rehabilitation in terms of increase in brain activation on affected motor area and wrist extension during bilateral arm movement.

Hand Gesture Recognition using Multivariate Fuzzy Decision Tree and User Adaptation (다변량 퍼지 의사결정트리와 사용자 적응을 이용한 손동작 인식)

  • Jeon, Moon-Jin;Do, Jun-Hyeong;Lee, Sang-Wan;Park, Kwang-Hyun;Bien, Zeung-Nam
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.81-90
    • /
    • 2008
  • While increasing demand of the service for the disabled and the elderly people, assistive technologies have been developed rapidly. The natural signal of human such as voice or gesture has been applied to the system for assisting the disabled and the elderly people. As an example of such kind of human robot interface, the Soft Remote Control System has been developed by HWRS-ERC in $KAIST^[1]$. This system is a vision-based hand gesture recognition system for controlling home appliances such as television, lamp and curtain. One of the most important technologies of the system is the hand gesture recognition algorithm. The frequently occurred problems which lower the recognition rate of hand gesture are inter-person variation and intra-person variation. Intra-person variation can be handled by inducing fuzzy concept. In this paper, we propose multivariate fuzzy decision tree(MFDT) learning and classification algorithm for hand motion recognition. To recognize hand gesture of a new user, the most proper recognition model among several well trained models is selected using model selection algorithm and incrementally adapted to the user's hand gesture. For the general performance of MFDT as a classifier, we show classification rate using the benchmark data of the UCI repository. For the performance of hand gesture recognition, we tested using hand gesture data which is collected from 10 people for 15 days. The experimental results show that the classification and user adaptation performance of proposed algorithm is better than general fuzzy decision tree.

  • PDF

Joint Optimization of the Motion Estimation Module and the Up/Down Scaler in Transcoders television (트랜스코더의 해상도 변환 모듈과 움직임 추정 모듈의 공동 최적화)

  • Han, Jong-Ki;Kwak, Sang-Min;Jun, Dong-San;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.10 no.3
    • /
    • pp.270-285
    • /
    • 2005
  • A joint design scheme is proposed to optimize the up/down scaler and the motion vector estimation module in the transcoder system. The proposed scheme first optimizes the resolution scaler for a fixed motion vector, and then a new motion vector is estimated for the fixed scaler. These two steps are iteratively repeated until they reach a local optimum solution. In the optimization of the scaler, we derive an adaptive version of a cubic convolution interpolator to enlarge or reduce digital images by arbitrary scaling factors. The adaptation is performed at each macroblock of an image. In order to estimate the optimal motion vector, a temporary motion vector is composed from the given motion vectors. Then the motion vector is refined over a narrow search range. It is well-known that this refinement scheme provides the comparable performance compared to the full search method. Simulation results show that a jointly optimized system based on the proposed algorithms outperforms the conventional systems. We can also see that the algorithms exhibit significant improvement in the minimization of information loss compared with other techniques.

Range of Motion, Stretching, and Aerobic Exercise in Accelerated Rehabilitation of Knee and Shoulder (슬관절과 견관절의 초기재활과정에서 관절운동범위와 스트레칭, 그리고 유산소성 운동 프로그램)

  • Kim Yong-Kweon;Jin Young-Soo
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.2 no.1
    • /
    • pp.56-61
    • /
    • 2003
  • This is a review article about range of motion, stretching, and aerobic exercise in accelerated rehabilitation of knee and shoulder. If the joint was immobilized for a long time after injury, it would cause stiffness and atrophy. Therefore, this program includes various exercise techniques; range of motion for joint stiffness, and stretching for muscle relaxation, and cardiovascular training (e.g., swimming, upper body extremity, stationary bicycle) for prevention of cardiopulmonary function decrease. In accelerated rehabilitation, It is very important factor to make interaction between clinical exercise specialist and patients. Also, we recommend that they should discuss with sports medicine doctor as a team members the following; pain, adaptation of exercise, fitness level, and progression of program.

  • PDF