• Title/Summary/Keyword: Motion Processing

Search Result 1,363, Processing Time 0.025 seconds

Design and Verification of Algorithms for the Motion Detection of Vehicles using Hierarchical Motion Estimation and Parallel Processing (계층화 모션 추정법과 병렬처리 기반의 차량 움직임 측정 알고리즘 개발 및 검증1))

  • 강경훈;심현진;이은숙;정성태;남궁문;금기정;이상설
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.21-24
    • /
    • 2002
  • This paper presents a new method for the motion detection of vehicles using hierarchical motion estimation and parallel processing. It captures the road image by using a CMOS sensor. It divides the captured image into small blocks and detects the motion of each block by using a block-matching method which is based on a hierarchical motion estimation and parallel processing for the real-time processing. The parallelism is achieved by using the pipeline and the data flow technique. The proposed method has been implemented with an embedded system. Experimental results show that the proposed method detects the motion of vehicles in real-time.

  • PDF

Implementation of Effective Automatic Foreground Motion Detection Using Color Information

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.131-140
    • /
    • 2017
  • As video equipments such as CCTV are used for various purposes in fields of society, digital video data processing technology such as automatic motion detection is essential. In this paper, we proposed and implemented a more stable and accurate motion detection system based on background subtraction technique. We could improve the accuracy and stability of motion detection over existing methods by efficiently processing color information of digital image data. We divided the procedure of color information processing into each components of color information : brightness component, color component of color information and merge them. We can process each component's characteristics with maximum consideration. Our color information processing provides more efficient color information in motion detection than the existing methods. We improved the success rate of motion detection by our background update process that analyzed the characteristics of the moving background in the natural environment and reflected it to the background image.

Joint Overlapped Block Motion Compensation Using Eight-Neighbor Block Motion Vectors for Frame Rate Up-Conversion

  • Li, Ran;Wu, Minghu;Gan, Zongliang;Cui, Ziguan;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2448-2463
    • /
    • 2013
  • The traditional block-based motion compensation methods in frame rate up-conversion (FRUC) only use a single uniquely motion vector field. However, there will always be some mistakes in the motion vector field whether the advanced motion estimation (ME) and motion vector analysis (MA) algorithms are performed or not. Once the motion vector field has many mistakes, the quality of the interpolated frame is severely affected. In order to solve the problem, this paper proposes a novel joint overlapped block motion compensation method (8J-OBMC) which adopts motion vectors of the interpolated block and its 8-neighbor blocks to jointly interpolate the target block. Since the smoothness of motion filed makes the motion vectors of 8-neighbor blocks around the interpolated block quite close to the true motion vector of the interpolated block, the proposed compensation algorithm has the better fault-tolerant capability than traditional ones. Besides, the annoying blocking artifacts can also be effectively suppressed by using overlapped blocks. Experimental results show that the proposed method is not only robust to motion vectors estimated wrongly, but also can to reduce blocking artifacts in comparison with existing popular compensation methods.

Design and Implementation of Algorithms for the Motion Detection of Vehicles using Hierarchical Motion Estimation and Parallel Processing (계층화 모션 추정법과 병렬처리를 이용한 차량 움직임 측정 알고리즘 개발 및 구현)

  • 강경훈;정성태;이상설;남궁문
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1189-1199
    • /
    • 2003
  • This paper presents a new method for the motion detection of vehicles using hierarchical motion estimation and parallel processing. It captures the road image by using a CMOS sensor. It divides the captured image into small blocks and detects the motion of each block by using a block-matching method which is based on a hierarchical motion estimation and parallel processing for the real-time processing. The parallelism is achieved by using tile pipeline and the data flow technique. The proposed method has been implemented by using an embedded system. The proposed block matching algorithm has been implemented on PLDs(Programmable Logic Device) and clustering algorithm has been implemented by ARM processor. Experimental results show that the proposed system detects the motion of vehicles in real-time.

  • PDF

Adaptive Enhancement Method for Robot Sequence Motion Images

  • Yu Zhang;Guan Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.370-376
    • /
    • 2023
  • Aiming at the problems of low image enhancement accuracy, long enhancement time and poor image quality in the traditional robot sequence motion image enhancement methods, an adaptive enhancement method for robot sequence motion image is proposed. The feature representation of the image was obtained by Karhunen-Loeve (K-L) transformation, and the nonlinear relationship between the robot joint angle and the image feature was established. The trajectory planning was carried out in the robot joint space to generate the robot sequence motion image, and an adaptive homomorphic filter was constructed to process the noise of the robot sequence motion image. According to the noise processing results, the brightness of robot sequence motion image was enhanced by using the multi-scale Retinex algorithm. The simulation results showed that the proposed method had higher accuracy and consumed shorter time for enhancement of robot sequence motion images. The simulation results showed that the image enhancement accuracy of the proposed method could reach 100%. The proposed method has important research significance and economic value in intelligent monitoring, automatic driving, and military fields.

Unsupervised Motion Pattern Mining for Crowded Scenes Analysis

  • Wang, Chongjing;Zhao, Xu;Zou, Yi;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3315-3337
    • /
    • 2012
  • Crowded scenes analysis is a challenging topic in computer vision field. How to detect diverse motion patterns in crowded scenarios from videos is the critical yet hard part of this problem. In this paper, we propose a novel approach to mining motion patterns by utilizing motion information during both long-term period and short interval simultaneously. To capture long-term motions effectively, we introduce Motion History Image (MHI) representation to access to the global perspective about the crowd motion. The combination of MHI and optical flow, which is used to get instant motion information, gives rise to discriminative spatial-temporal motion features. Benefitting from the robustness and efficiency of the novel motion representation, the following motion pattern mining is implemented in a completely unsupervised way. The motion vectors are clustered hierarchically through automatic hierarchical clustering algorithm building on the basis of graphic model. This method overcomes the instability of optical flow in dealing with time continuity in crowded scenes. The results of clustering reveal the situations of motion pattern distribution in current crowded videos. To validate the performance of the proposed approach, we conduct experimental evaluations on some challenging videos including vehicles and pedestrians. The reliable detection results demonstrate the effectiveness of our approach.

Full Search Equivalent Motion Estimation Algorithm for General-Purpose Multi-Core Architectures

  • Park, Chun-Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.13-18
    • /
    • 2013
  • Motion estimation is a key technique of modern video processing that significantly improves the coding efficiency significantly by exploiting the temporal redundancy between successive frames. Thread-level parallelism is a promising method to accelerate the motion estimation process for multithreading general-purpose processors. In this paper, we propose a parallel motion estimation algorithm which parallelizes the motion search process of the current H.264/AVC encoder. The proposed algorithm is implemented using the OpenMP application programming interface (API) and can be easily integrated into the current encoder. The experimental results show that the proposed parallel algorithm can reduce the processing time of the motion estimation up to 65.08% without any penalty in the rate-distortion (RD) performance.

Optimization Method on the Number of the Processing Elements in the Multi-Stage Motion Estimation Algorithm for High Efficiency Video Coding (HEVC 다단계 움직임 추정 기법에서 단위 연산기 개수의 최적화 방법)

  • Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.100-103
    • /
    • 2017
  • Motion estimation occupies the largest computation in the video compression. Multiple processing elements are often exploited in parallel to meet processing speed. More processing elements increase processing speed, but they also increase hardware area. therefore, it is important to optimize the number of processing element. HEVC (high efficiency video coding) usually exploits multi-stage motion estimation algorithms for low computation and high performance. Since the number and position of search points are different in each stage, the utilization of the processing elements is not always 100% and the utilization is quite different with the number of processing elements. In this paper, the optimizing method is proposed on the number of processing elements. It finds out the optimal number of the processing elements for the given multi-stage motion estimation algorithm by calculating utilization and execution cycle of the processing elements.

A Study to Eliminate the Motion Artifacts of Pulse Oximeter using Filter Banks (필터뱅크를 이용한 펄스 옥시메터의 동잡음 제거)

  • 이주원;이종회;정원근;김주명;이건기
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.199-202
    • /
    • 2001
  • In this paper, we propose new method of signal processing for the Pulse Oximeter for resistant motion artifact. When measure Oxygen saturation, today Pulse Oximeter is low reality because of patient moving, and it low difficult to filtering because of overlap Oxygen saturation and motion artifact. For we measure high reality Oxygen saturation, we reduces motion artifact. In this paper, we Propose and simulate method of signal processing for the Pulse Oximeter for resistant motion artifact.

  • PDF

Efficient Processing Technique for Unavailable Data in Hardware Implementation of Motion Estimator with Parallel Processing Architecture (움직임 추정기의 병렬처리 구조 하드웨어 구현시비유효 데이터의 효율적인처리 방법)

  • Park, Jong-Hwa;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, we propose the efficient processing technique for unavailable data in hardware implementation of motion estimator in H.264/AVC with parallel processing architecture. Motion estimation processing in the hardware is generally based on pipe-lining, some MV data of neighbor blocks are not available, whereas all MV data are valid in software processing where the data are sequentially processed. In this paper, we solve the problem of data being unavailable in MVp computation. To minimize the quality degradation caused by unavailable MVs, in the proposed method, the unavailable MV of a neighboring block is replaced with an integer pel unit MV, an MVp of neighboring blocks, or an MVcol (MV of co-located block). Comparing to the conventional method [7], our method outperformed maximally 0.832dB and 0.179dB for QCIF and CIF, respectively, in terms of BDPSNR.