• Title/Summary/Keyword: Motion Prediction

Search Result 883, Processing Time 0.033 seconds

A Correlation Study of Clinical Outcomes by Quantification of Fatty Degeneration of the Subscapularis: Partial vs. Whole Cross-section

  • Park, Joo Hyun;Lee, Kwang Yeol;Rhee, Sung Min;Oh, Joo Han
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2018
  • Background: Fatty degeneration of rotator cuff is a well-known predictor of postoperative outcome. The purpose of this study was to evaluate the clinical features of rotator cuff tears involving subscapularis, and investigate whether fatty degeneration quantified from only the upper subscapularis correlates better with clinical outcomes than quantified from the whole subscapularis. Methods: We retrospectively analyzed 315 consecutive patients who underwent arthroscopic repair for rotator cuff tears involving subscapularis with a minimum follow-up of 1 year. Preoperative and postoperative visual analogue score for pain, range of motion and functional scores were assessed. Integrity of the repaired tendon was assessed at the 1-year follow-up with either magnetic resonance imaging or ultrasonography. Results: The mean Goutallier grade of whole cross-section was significantly lower than that of upper cross-section (1.59 vs. 1.71, p<0.05), but significantly higher than that of lower cross-section (1.59 vs. 1.01, p<0.05). In analysis of 37 re-tears, the occupancy of severe fatty degeneration in upper cross-section was 86.5%, which was significantly higher than that seen in whole cross-section (56.8%, p<0.05). We calculated the cut-off tear size for prediction of re-tears as 19.0 mm for retraction and 11.0 mm for superior-inferior. The cut-off Goutallier grade was 2.5 for both whole and upper cross-sections, but area under the curve was greater in the upper cross-section than the whole (0.911 vs. 0.807). Conclusions: As fatty degeneration of upper subscapularis demonstrated a more distinct spectrum than whole subscapularis, we suggest that measuring fatty degeneration of upper subscapularis can be a more useful method to predict clinical prognosis.

Location of Ruptured Bullae in Secondary Spontaneous Pneumothorax

  • Choi, Jinseok;Ahn, Hyo Yeong;Kim, Yeong Dae;I, Hoseok;Cho, Jeong Su;Lee, Jonggeun
    • Journal of Chest Surgery
    • /
    • v.50 no.6
    • /
    • pp.424-429
    • /
    • 2017
  • Background: The surgical treatment of secondary spontaneous pneumothorax (SSP) can be complicated by fragile lung parenchyma. The preoperative prediction of air leakage could help prevent intraoperative lung injury during manipulation of the lung. Common sites of bulla development and ruptured bullae were investigated based on computed tomography (CT) and intraoperative findings. Methods: The study enrolled 208 patients with SSP who underwent air leak control through video-assisted thoracoscopic surgery (VATS). We retrospectively reviewed the sites of bulla development on preoperative CT and the rupture sites during VATS. Results: Of the 135 cases of right-sided SSP, the most common rupture site was the apical segment (31.9%), followed by the azygoesophageal recess (27.4%). Of the 75 cases on the left side, the most common rupture site was the apical segment (24.0%), followed by the anterior basal segment (17.3%). Conclusion: The azygoesophageal recess and parenchyma along the cardiac border were common sites of bulla development and rupture. Studies of respiratory lung motion to measure the pleural pressure at the lung surface could help to determine the relationship between cardiogenic and diaphragmatic movement and bulla formation or rupture.

Prediction Model for the Risk of Scapular Winging in Young Women Based on the Decision Tree

  • Gwak, Gyeong-tae;Ahn, Sun-hee;Kim, Jun-hee;Weon, Young-soo;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.27 no.2
    • /
    • pp.140-148
    • /
    • 2020
  • Background: Scapular winging (SW) could be caused by tightness or weakness of the periscapular muscles. Although data mining techniques are useful in classifying or predicting risk of musculoskeletal disorder, predictive models for risk of musculoskeletal disorder using the results of clinical test or quantitative data are scarce. Objects: This study aimed to (1) investigate the difference between young women with and without SW, (2) establish a predictive model for presence of SW, and (3) determine the cutoff value of each variable for predicting the risk of SW using the decision tree method. Methods: Fifty young female subjects participated in this study. To classify the presence of SW as the outcome variable, scapular protractor strength, elbow flexor strength, shoulder internal rotation, and whether the scapula is in the dominant or nondominant side were determined. Results: The classification tree selected scapular protractor strength, shoulder internal rotation range of motion, and whether the scapula is in the dominant or nondominant side as predictor variables. The classification tree model correctly classified 78.79% (p = 0.02) of the training data set. The accuracy obtained by the classification tree on the test data set was 82.35% (p = 0.04). Conclusion: The classification tree showed acceptable accuracy (82.35%) and high specificity (95.65%) but low sensitivity (54.55%). Based on the predictive model in this study, we suggested that 20% of body weight in scapular protractor strength is a meaningful cutoff value for presence of SW.

Characteristics of Site Amplification of the Broad-band Seismic Stations in Korea (국내 광대역 지진관측소의 부지증폭 특성)

  • Kim, Seo-Young;Kim, Sung-Kyun
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.810-823
    • /
    • 2009
  • One of the critical factors in accurate determination of earthquake source parameters, and in prediction of seismic hazards is the detailed information related to the site amplification characteristics. The site amplification characteristics of the broad-band seismic stations in Korea were estimated as a function of frequency in the range of 0.2 to 20 Hz. A total of 1275 seismograms recorded from 43 earthquakes observed from 2003 to 2008 in the southern Korean Peninsula were used. It was found that the site amplification ratios for 28 stations estimated from the inversion of the ground motion model were approximately concordant with those obtained from the horizontal-to-vertical (H/V) spectral ratio except for some stations. The spectral site amplification characteristics obtained in this study did not show any considerable spatial distribution. It revealed to be largely correlated with the degree of weathering rather than the basement rock type. Considering the spectral site amplification ratio, 28 broad-band stations were classified into four groups and the characteristics of each group were described in the text.

Propeller racing of ocean-going ships with multiple screw propellers (다축선의 프로펠러 레이싱 추정에 관한 연구)

  • Park, Jong-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.3
    • /
    • pp.222-231
    • /
    • 2007
  • This paper represents a basic statistical examination on the navigability of ocean-going ship from the point of estimating the time lasting period when propeller racing occurred by using the basic probability theory and the statistics. The propeller racing is one of the most important seakeeping qualities in relation to the safety of the main engine and shafting system. The trend of the racing has been mainly investigated in order to estimate allowable maximum propeller diameter, operation of ocean-going ships, etc.. In those studies, the propeller racing generally and mainly means the situation (propeller exposed) in which the relative motion amplitude between ship hull and wave surface would exceed a depth of point in rotary disk propeller. Therefore, it seems that the magnitude of the amplitude and its exceeding frequency of propeller racing have been examined as a principal subject of study as usual. However, the time during which the amplitude exceeds the depth of point, that is, the propeller exposes in the air, must be also one of most important factor affecting the trend of propeller racing. Then, this paper proposes a new practical method for estimating the time lasting of exposed propeller related to propeller racing in rough-confused seas on the basis of the linear strip theory and the statistics. And, numerical examples of estimating the propeller racing probability are given for four wide ship forms. Finally the usefulness of the proposed method for predicting propeller racing based on the time lasting period is discussed.

An Optimum Design of a Steering Column to Minimize the Injury of a Passenger (승객 상해의 감소를 위한 승용차 조향주의 최적설계)

  • Park, Y.S;Lee, J.Y.;Park, G.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.33-44
    • /
    • 1995
  • As the occupant safety receives more attention from automobile industries. protection systems have been developed quite well. Developed protection systems must be evaluated through real tests in crash environment Since the real tests are extremely expensive. computer simulations are replaced for some prediction of the real test In the computer simulation. it is very crucial to express the real environment precisely in the modeling precess. The energy absorbing(EA) steering system has a very important rote in vehicle crashes because the occupant can hit the system directly. In this study. the EA steering system is modeled precisely. analyzed for the safely and designed by an optimization technology. First. the EA steering system is disassembled by parts and modeled by segments and joints. The segments are modeled by rigid bodies in motion and they have resistances in contact. Spring-damper elements and force-deflection curves are utilized to represent the joints. The body block test is cal lied out to validate. the modeling. When the test results are not enough for the detailed modeling. the differences between tests and simulations are minimized to calculate unknown parameters using optimization. The established model is applied to a crash simulation of a full-car model and tuned again. After the modeling is finished. components of the steering system are designed by an optimization algorithm. In the optimization process. the compound injury of a driver is defined and minimized to determine the chracteristics of the components. The second. order approximation algorithm has been adopted for the optimization.

  • PDF

ANALYSIS ON GPS PWV EFFECTS AS AN INITIAL INPUT DATA OF NWP MODEL (수치예보모델 초기치로서 GPS 가강수량 영향 분석)

  • Lee, Jae-Won;Cho, Jung-Ho;Baek, Jeong-Ho;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.285-296
    • /
    • 2007
  • The Precipitable Water Vapor (PWV) from GPS with high resolution in terms of time and space might reduce the limitations of the numerical weather prediction (NWP) model for easily variable phenomena, such as precipitation and cloud. We have converted to PWV from Global Positioning System (GPS) data of Korea Astronomy and Space Science Institute (KASI) and Ministry of Maritime Affairs & Fisheries (MOMAF). First of all, we have selected the heavy rainfall case of having a predictability limitation in time and space due to small-scale motion. In order to evaluate the effect for GPS PWV, we have executed the sensitivity experiment with PWV from GPS data over Korean peninsula in the Weather Research & Forecasting 3-Dimensional Variational (WRF-3DVAR). We have also suggested the direction of further research for an improvement of the predictability of NWP model on the basis of this case.

Quality Evaluation of Wind Vectors from UHF Wind Profiler using Radiosonde Measurements (라디오존데 관측자료를 이용한 UHF 윈드프로파일러 바람관측자료의 품질평가)

  • Kim, Kwang-Ho;Kim, Min-Seong;Seo, Seong-Woon;Kim, Park-Sa;Kang, Dong-Hwan;Kwon, Byung Hyuk
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.133-150
    • /
    • 2015
  • Wind profiler provides vertical profiles of three-dimensional wind vectors with high spatiotemporal resolution. The wind vectors is useful to analyze severe weather phenomena and to validate the various products from numerical weather prediction model. However, the wind measurements are not immune to ground clutter, bird, insect, and aircraft. Therefore, quality of wind vectors from wind profiler must be quantitatively evaluated prior to its application. In this study, wind vectors from UHF wind profiler at Ganwon Regional Meteorological Administration was quantitatively evaluated using 27 radiosonde measurements that were launched every two or three hours according to rainfall intensity during Intensive Observation Period (IOP) from June to July 2013. In comparison between two measurements, wind vectors from wind profiler was relatively underestimated. In addition, the accuracy and quality of wind vectors from wind profiler decrease with increasing beam height. The accuracy and quality of the wind vectors for rainy periods during IOP were higher than for the clear-air measurements. The moderate rainfall intensity lead to multi-peaks in Doppler spectrum. It results in overestimation of vertical air motion, whereas wind vectors from wind profilers shows good agreement with those from radiosonde measurements for light rainfall intensity.

An Effective MC-BCS-SPL Algorithm and Its Performance Comparison with Respect to Prediction Structuring Method (효과적인 MC-BCS-SPL 알고리즘과 예측 구조 방식에 따른 성능 비교)

  • Ryug, Joong-seon;Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1355-1363
    • /
    • 2017
  • Recently, distributed compressed video sensing (DCVS) has been actively studied in order to achieve a low complexity video encoder by integrating both compressed sensing and distributed video coding characteristics. Conventionally, a motion compensated block compressed sensing with smoothed projected Landweber (MC-BCS-SPL) has been considered as an effective scheme of DCVS with all compressed sensing frames pursuing the simplest sampling. In this scheme, video frames are separately classified into key frames and WZ frames. However, when reconstructing WZ frame with conventional MC-BCS-SPL scheme at the decoder side, the visual qualities are poor for temporally active video sequences. In this paper, to overcome the drawbacks of the conventional scheme, an enhanced MC-BCS-SPL algorithm is proposed, which corrects the initial image with reference to the key frame using a high correlation between adjacent key frames. The proposed scheme is analyzed with respect to GOP (Group of Pictures) structuring method. Experimental results show that the proposed method performs better than conventional MC-BCS-SPL in rate-distortion.

Prediction for Rotor Aerodynamics of Quadcopter Type Unmanned Aerial Vehicle Considering Gust and Flight Conditions (비행 조건의 영향을 고려한 쿼드콥터형 무인비행체의 로터 공력 특성 예측)

  • Park, SunHoo;Eun, WonJong;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.833-844
    • /
    • 2018
  • This paper aims to predict the aerodynamic characteristics of individual rotor for the gust and flight conditions. Transformation procedure into the wind frame is conducted to analyze the gust. Hover, forward, and climb flight conditions of an individual rotor are analyzed using the blade element momentum theory (BEMT) considering the rigid blade flapping motion. XFOIL is used to derive aerodynamic results. Validation for hover, forward flight, and climb conditions are conducted using the present BEMT. In addition, a static experimental environment is constructed. The experimental results and the present BEMT are compared and verified.