• Title/Summary/Keyword: Motion Direction

Search Result 1,433, Processing Time 0.026 seconds

Local Obstacle Avoidance Method of Mobile Robots Using LASER scanning sensor (레이저 스캐닝 센서를 이용한 이동 로봇의 지역 장애물 회피 방법)

  • Kim, Sung Cheol;Kang, Won Chan;Kim, Dong Ok;Seo, Dong Jin;Ko, Nak Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.155-160
    • /
    • 2002
  • This paper focuses on the problem of local obstacle avoidance of mobile robots. To solve this problem, the safety direction section search algorithm is suggested. This concept is mainly composed with non-collision section and collision section from the detecting area of laser scanning sensor. Then, we will search for the most suitable direction in these sections. The proposed local motion planning method is simple and requires less computation than others. An environment model is developed using the vector space concept to determine robot motion direction taking the target direction, obstacle configuration, and robot trajectory into account. Since the motion command is obtained considering motion dynamics, it results in smooth and fast as well as safe movement. Using the mobile base, the proposed obstacle avoidance method is tested, especially in the environment with pillar, wall and some doors. Also, the proposed autonomous motion planning and control algorithm are tested extensively. The experimental results show the proposed method yields safe and stable robot motion through the motion speed is not so fast.

Cancellation of MRI Motion Artifact in Image Plane

  • Kim Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • In this study, a new algorithm for canceling a MRI artifact due to the translational motion In the image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction were estimated simultaneously. However, the feature of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by the different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in an reverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF

Kinematical Analysis of Tippelt Motion in Parallel Bars (평행봉 Tippelt 동작의 기술 분석)

  • Back, Hun-Sik;Kim, Min-Soo;Moon, Byoung-Yong;Back, Jin-Ho;Yoon, Chang-Sun
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.167-176
    • /
    • 2007
  • The purpose of this study was to offer suitable model for performing Tippelt motion and data for training Tippelt motion through the quantitative kinematical analysis of Tippelt motion in parallel bars. The results of analysing kinematic variations through three-dimensional reflection analysis of three members of the national team as the objects of the study were shown as follows. 1. It seemed that the shoulder-joints which are stretched as much as possible affects the whole Tippelt motion while one is swinging downward. The time of process of the center of mass for the body reaching to the maximum flection point should be quick and body's moving from the vertical phase to the front direction should be controled as much as possible. 2. While one is swinging upward, the stability of flying motion could be made certain by the control of body's rapid moving to the front direction and stretching shoulder-joints and hip-joint to reverse direction. 3. While one is flying upward, the body should be erected quickly and lessening the angle of the hip-joint affects the elevation of flight. When the powerful counter turn motion is performed, the stable motion could be made. As a result of this study, It seems that sudden fall and the maximum stretch of shoulder-joints is important during performing Tippelt motion in parallel bars. Also, it concludes that the maximum bending of hip-joints at the starting point of upward swing, sudden stretch to the reverse direction of shoulder-joints and hip-joints when one is leaving bars, control of body's moving to the front direction, and lessening the angle of hip-joints at the flying phase is important.

Wafer Motion Modeling of Transfer Unit in Clean Tube System (클린 튜브 시스템 이송 유닛의 웨이퍼 운동 역학 모델링)

  • 신동헌;정규식;윤정용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.66-73
    • /
    • 2004
  • This paper presents wafer motion modeling of transfer unit in clean tube system, which was developed as a means for transferring the air-floated wafers inside the closed tube filled with the super clean airs. When the wafer is transferred in x direction with an initial velocity the motion along x direction can be modeled as a simple decaying motion due to viscous friction of the fluid. But, the motion in y direction is modeled as a mass-spring-damper system where the recovering force by air jets issued from the perforated is modeled as a linear spring. Experiments with a clean tube system built fur 12 wafer show the validity of the presented force and motion models.

Estimation of Moving Direction of Objects for Vehicle Tracking in Underground Parking Lot (지하 주차장 차량 추적을 위한 객체의 이동 방향 추정)

  • Nguyen, Huu Thang;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.305-311
    • /
    • 2021
  • One of the highly reliable object tracking methods is to trace objects by associating objects detected by deep learning. The detected object is represented by a rectangular box. The box has information such as location and size. Since the tracker has motion information of the object in addition to the location and size, knowing additional information about the motion of the detected box can increase the reliability of object tracking. In this paper, we present a new method of reliably estimating the moving direction of the detected object in underground parking lot. First, the frame difference image is binarized for detecting motion energy, change due to the object motion. Then, a cumulative binary image is generated that shows how the motion energy changes over time. Next, the moving direction of the detected box is estimated from the accumulated image. We use a new cost function to accurately estimate the direction of movement of the detected box. The proposed method proves its performance through comparative experiments of the existing methods.

Factor Analysis of the Somatosensory for Foot according to the Instability Level of Snatch Lifting (역도 인상동작 불안정성 수준에 따른 발바닥 체성감각요인 분석)

  • Moon, Young Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.7-16
    • /
    • 2020
  • Objective: It is to find factors related to stability through analysis of plantar pressure factors according to the level of instability when performing Snatch. Method: Foot pressure analysis was performed while 10 weightlifters performed 80% of the highest level of Snatch, and motion was classified and analyzed in 3 grades according to the level of instability. Results: First, in Bad Motion, the movement distance of the pressure center in the direction of ML and AP was larger significantly in Phase 2. Second, in Phase 2, the number of zero-crossing in the AP direction was larger statistically significantly in Good Motion. Third, in the bad motion in Phase 3, the number of zero-crossing in the ML direction showed a significantly larger value. Fourth, in Phase 4, it was found that the more stable the lock out motion, the greater the activity of foot controlling in the left and right directions. Fifth, Phase 3, the greater the Maximum/Mean foot pressure value, the more stable the pulling action. Sixth, in Phase 2, the foot pressure was concentrated with a wide distribution in the midfoot and rearfoot. Seventh, the triggering number of the forefoot region was small in the last pull phase. Eighth, the number of triggers in the toe area was significantly higher during Good Motion in Phase 4. Conclusion: Summarizing the factors of instability in Snatch, there was no significant difference in Phase 1 for each condition. In order to enhance the stability in Phase 2, the sensory control ability in the AP direction is required, and focusing the foot pressing motion with a wide distribution in the middle and rear parts increases the instability. In Phase 3, it was found that the more unstable, the more sensory control activity was performed in the ML direction, the stronger the forefoot pressing action should be performed for a stable Snatch. In Phase 4, It is important that the feet sensory control activity in ML directions and the control ability of the toes in order to have stable Lock out motion.

A Study on the Mechanism of Arm Surface Changes for the development of Sleeve Drafting Standard (소매설계기준 개발을 위한 상지체표변화구조에 관한 연구)

  • 최해주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.5
    • /
    • pp.852-859
    • /
    • 1996
  • The factors and mechanism of arm surface changes were analyzed by regression analysis for the relationship between changes in arm joint angle and arm surface changes, according to the direction of upper extremity motion. Body surface change patterns among subjects were tested also. Experiments were carried out on 3 female subjects of different body types to examine 26 motions in 4 directions for 4 upper extremity parts. The major conclusions of the study are as follows: 1. The expansion or contraction of arm surface length depends on the direction of upper extremity motion. 2. Arm surface length changes by linear expansion or contraction according to the joint angle of the direction of motion. The mechanism of arm surface changes is represented by a linear relation between arm surface changes and the (actors of the direction of upper extremity motion and arm joint angle. 3. Arm surface length shows the same pattern of body surface changes regardless of body type. A quantitative model of body surface changes at upper extremity should be developed for functional sleeve design.

  • PDF

An XY scanner with minimized coupling motions for the high speed AFM (상호 간섭이 최소화된 고속 원자현미경용 XY 스캐너 제작)

  • Park J.;Moon W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.653-656
    • /
    • 2005
  • This paper introduces design, fabrication and experiment process of a novel scanner for the high speed AFM(Atomic Force Microscope). A proper design modification is proposed through analyses on the dynamic characteristics of the existing linear motion stages using a dynamic analysis program, Recurdyn. Since the scanning speed of each direction is allowed to be different, the linear motion stage for the high-speed scanner of AFM can be so designed to have different resonance frequencies for the modes with one dominant displacement in the desired directions. One way to achieve this objective is to use one-direction flexure mechanism for each direction and to mount one stage for fast motion on the other stage for slow motion. This unsymmetrical configuration separates the frequencies of the two vibration modes with one dominant displacement in each desired direction, hence, the coupling between the motions in the two directions. In addition, a pair of actuators is used for each axis to decrease the cross talks in the two motions and gives a force large enough to actuate the slow motion stage, which carries the fast motion stage. After these design modifications, a novel scanner with scanning speed higher than 10 Hz can be achieved to realize undistorted images in the high speed AFM.

  • PDF

Pitch Directional Swimming Control of Multi-Legged Biomimetic Underwater Robot (CALEB10) (다족형 생체모방 수중 로봇(CALEB10)의 Pitch 유영 제어)

  • Lee, Hansol;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.228-238
    • /
    • 2017
  • The CALEB10 is a multi-legged biomimetic underwater robot. In the last research, we developed a swimming pattern named ESPG (Extended Swimming Pattern Generator) by observing diving beetle's swimming actions and experimented with a positive buoyancy state in which CALEB10 floats on the water. In this paper, however, we have experimented with CALEB10 in a neutral buoyancy state where it is completely immersed in water for pitch motion control experiment. And we found that CALEB10 was unstably swimming in the pitch direction in the neutral buoyancy state and analyzed that the reason was due to the weight proportion of the legs. In this paper, we propose a pitch motion control method to mimic the pitch motion of diving beetles and to solve the problem of CALEB10 unstably swimming in the pitch direction. To control the pitch motion, we use the method of controlling additional joints while swimming with the ESPG. The method of obtaining propulsive force by the motion of the leg has a problem of giving propulsive force in the reverse direction when swimming in the surge direction, but this new control method has an advantage that a propulsive moment generated by a swimming action only on a target pitch value. To demonstrate validity this new control method, we designed a dynamics-based simulator environment. And the control performance to the target pitch value was verified through simulation and underwater experiments.

Motion Control of an Omnidirectional Mobile Robot with Steerable Omnidirectional Wheels

  • Byun, Kyung-Seok;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.37.6-37
    • /
    • 2002
  • Omnidirectional mobile robots are capable of arbitrary motion in an arbitrary direction without changing the direction of wheels, because they can perform 3 degree-of-freedom (DOF) motion on a 2-dimensional plane. In this research, a new class of an omnidirectional mobile robot is proposed. Since it has synchronously steerable omnidirectional wheels, it is called an omnidirectional mobile robot with steerable omnidirectional wheels (OMR-SOW). It has 3 DOFs in motion and one DOF in steering. One steering DOF can function as a continuously variable transmission (CVT). CVT of the OMR-SOW increases the range of velocity ratio from the wheel velocities to robot velocity, which may improve...

  • PDF