• Title/Summary/Keyword: Motion Compensation

Search Result 583, Processing Time 0.041 seconds

Hybrid Silhouette Extraction Using Color and Gradient Informations (색상 및 기울기 정보를 이용한 인간 실루엣 추출)

  • Joo, Young-Hoon;So, Jea-Yun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.913-918
    • /
    • 2007
  • Human motion analysis is an important research subject in human-robot interaction (HRI). However, before analyzing the human motion, silhouette of human body should be extracted from sequential images obtained by CCD camera. The intelligent robot system requires more robust silhouette extraction method because it has internal vibration and low resolution. In this paper, we discuss the hybrid silhouette extraction method for detecting and tracking the human motion. The proposed method is to combine and optimize the temporal and spatial gradient information. Also, we propose some compensation methods so as not to miss silhouette information due to poor images. Finally, we have shown the effectiveness and feasibility of the proposed method through some experiments.

Dynamic Workspace Control of Underwater Manipulator Considering ROV Motion (ROV의 운동이 고려된 수중 로봇팔의 동적 작업공간 구동 제어)

  • Shim, Hyung-Won;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.460-470
    • /
    • 2011
  • This paper presents a dynamic workspace control method of underwater manipulator considering a floating ROV (Remotely Operated vehicle) motion caused by sea wave. This method is necessary for the underwater work required linear motion control of a manipulator's end-effector mounted on a floating ROV in undersea. In the proposed method, the motion of ROV is modeled as nonlinear first-order differential equation excluded dynamic elements. For online manipulator control achievement, we develop the position tracking method based on sensor data and EKF (Extended Kalman Filter) and the input velocity compensation method. The dynamic workspace control method is established by applying these methods to differential inverse kinematics solution. For verification of the proposed method, experimental data based test of ROV position tracking and simulation of the proposed control method are performed, which is based on the specification of the KORDI deep-sea ROV Hemire.

A Novel Spiral-Type Motion Estimation Architecture for H.264/AVC

  • Hirai, Naoyuki;Song, Tian;Liu, Yizhong;Shimamoto, Takashi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.37-44
    • /
    • 2010
  • New features of motion compensation, such as variable block size and multiple reference frames are introduced in H.264/AVC. However, these new features induce significant implementation complexity increases. In this paper, an efficient architecture for spiral-type motion estimation is proposed. First, we propose a hardware-friendly spiral search order. Then, an efficient processing element (PE) architecture for ME is proposed to achieve the proposed search order. The improved PE enables one-pixel-move of the reference pixel data to top, bottom, right, and left by four ports for input and output. Moreover, the parallel calculation architecture to calculate all block size with the SAD of 4x4 is introduced in the proposed architecture. As the result of hardware implementation, the hardware cost is about 145k gates. Maximum clock frequency is 134 MHz in the case of FPGA (Xilinx Vertex5) implementation.

Motion-Compensated Noise Estimation for Effective Video Processing (효과적인 동영상 처리를 위한 움직임 보상 기반 잡음 예측)

  • Song, Byung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.120-125
    • /
    • 2009
  • For effective noise removal prior to video processing, noise power or noise variance of an input video sequence needs to be found exactly, but it is actually a very difficult process. This paper presents an accurate noise variance estimation algorithm based on motion compensation between two adjacent noisy pictures. Firstly, motion estimation is performed for each block in a picture, and the residue variance of the best motion-compensated block is calculated. Then, a noise variance estimate of the picture is obtained by adaptively averaging and properly scaling the variances close to the best variance. The simulation results show that the proposed noise estimation algorithm is very accurate and stable irrespective of noise level.

Development of a Hydrostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 유정압안내면 개발)

  • 박천홍;오윤진;황주호;이득우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.139-144
    • /
    • 2004
  • In order to discuss the availability of hydrostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156 N and a laser scale with the resolution of 0.01 ${\mu}{\textrm}{m}$ are used as the feeding system. The experiments are performed on the static stuffiness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway has the infinite axial stillness within 50 N of applied load, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ${\mu}{\textrm}{m}$ of linear motion error and 0.1 arcsec of angular motion error are acquired. The guideway also has 0.21 ${\mu}{\textrm}{m}$ of positioning error and 0.09 ${\mu}{\textrm}{m}$ of repeatability, and it shows the stable response against the 0.01 ${\mu}{\textrm}{m}$ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is confirmed that the hydrostatic guideway driven by the coreless linear motor is very useful fur the ultra precision machine tools.

Design of maneuvering target tracking system using neural network as an input estimator (입력 추정기로서의 신경회로망을 이용한 기동 표적 추적 시스템 설계)

  • 김행구;진승희;박진배;주영훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.524-527
    • /
    • 1997
  • Conventional target tracking algorithms based on the linear estimation techniques perform quite efficiently when the target motion does not involve maneuvers. Target maneuvers involving short term accelerations, however, cause a bias in the measurement sequence. Accurate compensation for the bias requires processing more samples of which adds to the computational complexity. The primary motivation for employing a neural network for this task comes from the efficiency with which more features can be as inputs for bias compensation. A system architecture that efficiently integrates the fusion capabilities of a trained multilayer neural net with the tracking performance of a Kalman filter is described. The parallel processing capability of a properly trained neural network can permit fast processing of features to yield correct acceleration estimates and hence can take the burden off the primary Kalman filter which still provides the target position and velocity estimates.

  • PDF

A Study on the Waviness Compensation System of Ultraprecision Machining (초정밀가공의 파상도 보정시스템에 관한 연구)

  • Kim, Jeoung-Du
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.132-140
    • /
    • 1998
  • Recently, precision machining technology has been developed continuously in order to make high productivity and quality assurance of the precision parts of several industrial fields. Waviness may occur on the surface of the machined parts due to the table motion error and the dynamic cutting mechanism between the tool and the workpiece. The waviness may fall off the form accuracy of the precision machine parts. In the research, a micro cutting device with piezoelectric actuator has been developed to control precise depth of cut and compensate the waviness on the surface of the workpiece. Experiments have been carried out in the precision lathe. The characteristics of the surface profile and cause of the waviness profile have been analyzed and waviness profiles of some cause have been compared with those of experiments.

  • PDF

A Measurement Method to Compromise Surface Error in Machined Workpieces (평면 오차 보정 가공을 위한 측정 방법에 관한 연구)

  • 장문주;홍성욱;박천홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.409-412
    • /
    • 2002
  • This paper presents a measurement method to compromise surface error in surface machining processes. In order to compromise the surface error in machining process, on-machine measurement is essential. There are two kinds of on-machine measurement methods available to measure the surface errors in flat workpieces: i.e., surface scanning method and sensor scanning method. However, motion errors are inevitably engaged in both methods. This paper proposes a new idea to measure the surface error for error compensation. The measurement system consists of a laser, a CCD camera and processing system, a carrier system with a stylus, and some optical units. The experimental results show that the proposed method is useful to compensate the surface errors of machined workpieces.

  • PDF

Simultaneous Positioning and Vibration Control of Chip Mounter with Structural Flexibility (칩마운터 구조물의 유연성을 고려한 위치와 진동 동시 제어)

  • Kang, Min Sig
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Chip mounter which is used to pick chips from the pre-specified position and place them on the target location of PCB is an essential device in semiconductor and LCD industries. Quick and high precision positioning is the key technology needed to increase productivity of chip mounters. As increasing acceleration and deceleration of placing motion, structural vibration induced from inertial reactive force and flexibility of mounter structure becomes a serious problem degrading positioning accuracy. Motivated from these, this paper proposed a new control design algorithm which combines a mounter structure acceleration feedforward compensation and an extended sliding mode control for fine positioning and suppression of structural vibration, simultaneously. The feasibility of the proposed control design was verified along with some simulation results.

ZMP Compensation Algorithm for Stable Posture of a Humanoid Robot

  • Hwang, Byung-Hun;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2271-2274
    • /
    • 2005
  • The desired ZMP is different from the actual ZMP of a humanoid robot during actual walking and stand upright. A humanoid robot must maintain its stable posture although external force is given to the robot. A humanoid robot can know its stability with ZMP. Actual ZMP may be moved out of the foot-print polygons by external disturbance or uneven ground surfaces. If the position of ZMP moves out of stable region, the stability can not be guaranteed. Therefore, The control of the ZMP is necessary. In this paper, ZMP control algorithm is proposed. Herein, the ZMP control uses difference between desired ZMP and actual ZMP. The proposed algorithm gives reaction moment with ankle joint when external force is supplied. 3D simulator shows motion of a humanoid robot and calculated data.

  • PDF