• Title/Summary/Keyword: Motion Compensation

Search Result 583, Processing Time 0.029 seconds

Scaling-Translation Parameter Estimation using Genetic Hough Transform for Background Compensation

  • Nguyen, Thuy Tuong;Pham, Xuan Dai;Jeon, Jae-Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.8
    • /
    • pp.1423-1443
    • /
    • 2011
  • Background compensation plays an important role in detecting and isolating object motion in visual tracking. Here, we propose a Genetic Hough Transform, which combines the Hough Transform and Genetic Algorithm, as a method for eliminating background motion. Our method can handle cases in which the background may contain only a few, if any, feature points. These points can be used to estimate the motion between two successive frames. In addition to dealing with featureless backgrounds, our method can successfully handle motion blur. Experimental comparisons of the results obtained using the proposed method with other methods show that the proposed approach yields a satisfactory estimate of background motion.

Joint Overlapped Block Motion Compensation Using Eight-Neighbor Block Motion Vectors for Frame Rate Up-Conversion

  • Li, Ran;Wu, Minghu;Gan, Zongliang;Cui, Ziguan;Zhu, Xiuchang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2448-2463
    • /
    • 2013
  • The traditional block-based motion compensation methods in frame rate up-conversion (FRUC) only use a single uniquely motion vector field. However, there will always be some mistakes in the motion vector field whether the advanced motion estimation (ME) and motion vector analysis (MA) algorithms are performed or not. Once the motion vector field has many mistakes, the quality of the interpolated frame is severely affected. In order to solve the problem, this paper proposes a novel joint overlapped block motion compensation method (8J-OBMC) which adopts motion vectors of the interpolated block and its 8-neighbor blocks to jointly interpolate the target block. Since the smoothness of motion filed makes the motion vectors of 8-neighbor blocks around the interpolated block quite close to the true motion vector of the interpolated block, the proposed compensation algorithm has the better fault-tolerant capability than traditional ones. Besides, the annoying blocking artifacts can also be effectively suppressed by using overlapped blocks. Experimental results show that the proposed method is not only robust to motion vectors estimated wrongly, but also can to reduce blocking artifacts in comparison with existing popular compensation methods.

Frame Rate Up Conversion Method using Partition Block OBMC and Improved Adaptively Weighted Vector Median (분할 블록 OBMC와 개선된 적응 가중 중간값 필터를 이용한 프레임률 증가 기법)

  • Kim, Geun-Tae;Ko, Yun-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This paper proposes a new motion vector smoothing and motion compensation method to increase the frame rate of videos. The proposed method reduces false motion vector smoothing by improving the weight with reflecting accuracy to overcome the limitation of the conventional motion vector smoothing using the adaptively weighted vector median. Also, to improve the interpolated image quality of the conventional OBMC(Overlapped Block Motion Compensation), a scheme that divides an original block into 4 sub-blocks and then generates the interpolated frame using the reestimated motion vector for each sub-block is proposed. The simulation results prove that the proposed method can provide much better objective and subjective image quality than the conventional method.

A Study on Architecture of Motion Compensator for H.264/AVC Encoder (H.264/AVC부호화기용 움직임 보상기의 아키텍처 연구)

  • Kim, Won-Sam;Sonh, Seung-Il;Kang, Min-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.527-533
    • /
    • 2008
  • Motion compensation always produces the principal bottleneck in the real-time high quality video applications. Therefore, a fast dedicated hardware is needed to perform motion compensation in the real-time video applications. In many video encoding methods, the frames are partitioned into blocks of Pixels. In general, motion compensation predicts present block by estimating the motion from previous frame. In motion compensation, the higher pixel accuracy shows the better performance but the computing complexity is increased. In this paper, we studied an architecture of motion compensator suitable for H.264/AVC encoder that supports quarter-pixel accuracy. The designed motion compensator increases the throughput using transpose array and 3 6-tap Luma filters and efficiently reduces the memory access. The motion compensator is described in VHDL and synthesized in Xilinx ISE and verified using Modelsim_6.1i. Our motion compensator uses 36-tap filters only and performs in 640 clock-cycle per macro block. The motion compensator proposed in this paper is suitable to the areas that require the real-time video processing.

Design and Verification of the Motion Estimation and Compensation Unit Using Full Search Algorithm (전역탐색 알고리즘을 이용한 움직임 추정 보상부 설계 및 검증)

  • Jin Goon-Seon;Kang Jin-Ah;Lim Jae-Yoon
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.585-588
    • /
    • 2004
  • This paper describes design and verification of the motion estimation and compensation unit using full search algorithm. Video processor is the key device of video communication systems. Motion estimation is the key module of video processor. The technologies of motion estimation and compensation unit are the core technologies for wireless video telecommunications system, portable multimedia systems. In this design, Verilog simulator and logic synthesis tools are used for hardware design and verification. In this paper, motion estimation and compensation unit are designed using FPGA, coded in Verilog HDL, and simulated and verified using Xilinx FPGA.

  • PDF

A Study on the Subband Coding System Using Motion Compensation Techniques (이동 보상 기법을 이용한 서브밴드 부호화 시스템에 관한 연구)

  • 이기승;박용철;서정태;윤대희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.99-111
    • /
    • 1994
  • A motion picture compression scheme using subband coding with motion compensation is presneted in this paper. A hierarchical subband decomposition is used to split the image signal into 10 subbands with a 3-layer pyramid structure and motion compensation is used in each band. However, in this case, motion vector information is drastically increased; therefore, initial motion vectors are estimated in the highest pyramid and motion vectors are refined using the reconsructed subband signal in each layer. Simulation results show that the proposed method compares favorably in terms of prediction error energy and side informatio with methods requiring additional information. Images recostructed from the proposed method show good quality compared to those reconstructed using blockwise DCT.

  • PDF

New De-interlacing Algorithm Combining Edge Dependent Interpolation and Global Motion Compensation Based on Horizontal and Vertical Patterns (수평, 수직 패턴에 기반 한 경계 방향 보간과 전역 움직임 보상을 고려한 새로운 순차주사화 알고리즘)

  • 박민규;이태윤;강문기
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.43-53
    • /
    • 2004
  • In this paper, we propose a robust deinterlacing algorithm which combines edge dependent interpolation (EDI) and global motion compensation (GMC). Generally, EDI algorithm shows a visually better performance than any other deinterlacing algorithm using one field. However, due to the restriction of information in one field, a high duality progressive image from Interlaced sources cannot be acquired by intrafield methods. On the contrary, since algorithms based on motion compensation make use of not only spatial information but also temporal information, they yield better results than those of using one field. However, performance of algorithms based on motion compensation depends on the performance of motion estimation. Hence, the proposed algorithm makes use of mixing process of EDI and GMC. In order to obtain the best result, an adaptive thresholding algorithm for detecting the failure of GMC is proposed. Experimental results indicate that the proposed algorithm outperforms the conventional approaches with respect to both objective and subjective criteria.

LuGre Model-Based Neural Network Friction Compensator in a Linear Motor Stage

  • Horng, Rong-Hwang;Lin, Li-Ren;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.18-24
    • /
    • 2006
  • This paper proposes a LuGre Model-Based Neural Network (MBNN) friction compensation algorithm for a linear motor stage. For matching the friction phenomena in both the motion-start region and the motion-reverse region, the LuGre dynamic model is employed into the proposed compensation algorithm. After training of the model-based neural network is completed, the estimated friction for compensation is obtained. From the obtained result we find that the new structure gains advantage over the non-friction compensation system on the performance of the compensator in both regions. The proposed compensator is evaluated and compared experimentally with an uncompensated system on a microcomputer controlled linear motor tracking system in the final section of the paper. The experimental results show the improvement on the maximum velocity error and the root mean square tracking error in the motion-start region ranges from 34% to 53% and from 53% to 75% respectively, and in the motion-reverse region from 48% to 65% and from 79% to 90% respectively.

Motion-Field Segmentation for Video Coding (동영상 부호화를 위한 움직임 필터 영역화)

  • 강동욱;이승준;이충웅
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.141-148
    • /
    • 1994
  • This paper presents a new method for reducing the blocking artifacts there by increasing the prediction gains of the block-based motion compensation keeping the amount of the motion information to be transmitted intact. The new method improves the motion compensation along the edges of moving objects by segmenting the motion field at the pixel resolution based on the model that the motion compensated image is the maximum a poseriori estimate of the current frame.

  • PDF

A Tracking Filter with Motion Compensation in Local Navigation Frame for Ship-borne 2D Surveillance Radar (2 차원 탐색 레이다를 위한 국부 항법 좌표계에서의 운동보상을 포함한 추적필터)

  • Kim, Byung-Doo;Lee, Ja-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.507-512
    • /
    • 2007
  • This paper presents a tracking filter with ship's motion compensation for a ship-borne radar tracking system. The ship's maneuver is described by displacement and rotational motions in the ship-centered east-north frame. The first order Taylor series approximation of the measurement error covariance of the converted measurement is derived in the ship-centered east-north frame. The ship's maneuver is compensated by incorporating the measurement error covariance of the converted measurement and displacement of the position state in the tracking filter. The simulation results via 500 Monte-Carlo runs show that the proposed method follows the target successfully and provides consistent tracking performance during ship's maneuvers while the conventional tracking filter without ship motion compensation fails to track during such periods.