• Title/Summary/Keyword: Motion Capture Data

Search Result 280, Processing Time 0.024 seconds

3D Character Motion Synthesis and Control Method for Navigating Virtual Environment Using Depth Sensor (깊이맵 센서를 이용한 3D캐릭터 가상공간 내비게이션 동작 합성 및 제어 방법)

  • Sung, Man-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.827-836
    • /
    • 2012
  • After successful advent of Microsoft's Kinect, many interactive contents that control user's 3D avatar motions in realtime have been created. However, due to the Kinect's intrinsic IR projection problem, users are restricted to face the sensor directly forward and to perform all motions in a standing-still position. These constraints are main reasons that make it almost impossible for the 3D character to navigate the virtual environment, which is one of the most required functionalities in games. This paper proposes a new method that makes 3D character navigate the virtual environment with highly realistic motions. First, in order to find out the user's intention of navigating the virtual environment, the method recognizes walking-in-place motion. Second, the algorithm applies the motion splicing technique which segments the upper and the lower motions of character automatically and then switches the lower motion with pre-processed motion capture data naturally. Since the proposed algorithm can synthesize realistic lower-body walking motion while using motion capture data as well as capturing upper body motion on-line puppetry manner, it allows the 3D character to navigate the virtual environment realistically.

Motion-capture-based walking simulation of digital human adapted to laser-scanned 3D as-is environments for accessibility evaluation

  • Maruyama, Tsubasa;Kanai, Satoshi;Date, Hiroaki;Tada, Mitsunori
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.250-265
    • /
    • 2016
  • Owing to our rapidly aging society, accessibility evaluation to enhance the ease and safety of access to indoor and outdoor environments for the elderly and disabled is increasing in importance. Accessibility must be assessed not only from the general standard aspect but also in terms of physical and cognitive friendliness for users of different ages, genders, and abilities. Meanwhile, human behavior simulation has been progressing in the areas of crowd behavior analysis and emergency evacuation planning. However, in human behavior simulation, environment models represent only "as-planned" situations. In addition, a pedestrian model cannot generate the detailed articulated movements of various people of different ages and genders in the simulation. Therefore, the final goal of this research was to develop a virtual accessibility evaluation by combining realistic human behavior simulation using a digital human model (DHM) with "as-is" environment models. To achieve this goal, we developed an algorithm for generating human-like DHM walking motions, adapting its strides, turning angles, and footprints to laser-scanned 3D as-is environments including slopes and stairs. The DHM motion was generated based only on a motion-capture (MoCap) data for flat walking. Our implementation constructed as-is 3D environment models from laser-scanned point clouds of real environments and enabled a DHM to walk autonomously in various environment models. The difference in joint angles between the DHM and MoCap data was evaluated. Demonstrations of our environment modeling and walking simulation in indoor and outdoor environments including corridors, slopes, and stairs are illustrated in this study.

Realistic Visual Simulation of Water Effects in Response to Human Motion using a Depth Camera

  • Kim, Jong-Hyun;Lee, Jung;Kim, Chang-Hun;Kim, Sun-Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1019-1031
    • /
    • 2017
  • In this study, we propose a new method for simulating water responding to human motion. Motion data obtained from motion-capture devices are represented as a jointed skeleton, which interacts with the velocity field in the water simulation. To integrate the motion data into the water simulation space, it is necessary to establish a mapping relationship between two fields with different properties. However, there can be severe numerical instability if the mapping breaks down, with the realism of the human-water interaction being adversely affected. To address this problem, our method extends the joint velocity mapped to each grid point to neighboring nodes. We refine these extended velocities to enable increased robustness in the water solver. Our experimental results demonstrate that water animation can be made to respond to human motions such as walking and jumping.

Iguana motion synthesis using soft body simulation (연체 시뮬레이션 기반 이구아나 동작 생성)

  • Moon, Jaeseok;Kwon, Taesoo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • In this paper, we suggest a method to simulate high-quality iguana animation by using low-quality motion capture data. Iguana motion data captured using a small number of markers cannot express its movement precisely, and even with a realistic skin mesh, it shows unnatural movement because of limited degrees of freedom. In order to solve this problem, we propose to simulate a natural and flexible movement by applying a soft-body simulation technique which models the movement of an iguana according to muscle forces and body's elastic forces. We construct a motion graph from the motion capture data to describe the iguana's various movements, and utilize it to select appropriate movements when the iguana moves. A target point on a terrain is set from the user's input, and a graph path is planned based on it. As a result, the input movement of iguana walking on a flat ground transforms to a movement that is adapted in an online manner to the irregular heights of the terrain. Such a movement is used to calculate the ideal muscle lengths that are needed for soft-body simulation. Lastly, a tetrahedral mesh of the iguana is physically simulated to adapt to various situations by applying a soft-body simulation technique.

A Study on the real motion capture of 3D Game character and classificatory proposal the type, the shapes of 3D character animation (3D 게임캐릭터의 실사 움직임(Real working)과 3D 캐릭터 애니메이션의 종류별, 형태별 모델 분류 제안)

  • Yun, Hwang-Rok;Kyung, Byung-Pyo;Lee, Dong-Lyeor;Shon, Jong-Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.269-272
    • /
    • 2006
  • Game industry is one of the most popular sector in the world cultural industries in the digital era. 2D and 3D Animation with development of computer technology it. Because Animation needs to show real motion image. The computer hardware and software technique quick change it leads and 2D and 3D the animation is the tendency which provides the growth which is infinite. But recently Game graphic design have a trend 3D Game that is absorbed and easy handling. 2D Game Character is changing to 3D Game Character more and more. This thesis have significant the real motion capture of 3D Game Character and the types, the shapes of 3D Game Character animation. First of all this thesis will define about 3D Game Character as well it will be show examples of real motion capture also it will proposal data of real motion capture. Therefore it will be bring the high technology Animation industry with Digital Contents industry. also hope for the growth of Game Character Animation process and 3D Game Character Animation in Game industry as well contents industry.

  • PDF

Noise-Robust Capturing and Animating Facial Expression by Using an Optical Motion Capture System (광학식 동작 포착 장비를 이용한 노이즈에 강건한 얼굴 애니메이션 제작)

  • Park, Sang-Il
    • Journal of Korea Game Society
    • /
    • v.10 no.5
    • /
    • pp.103-113
    • /
    • 2010
  • In this paper, we present a practical method for generating facial animation by using an optical motion capture system. In our setup, we assumed a situation of capturing the body motion and the facial expression simultaneously, which degrades the quality of the captured marker data. To overcome this problem, we provide an integrated framework based on the local coordinate system of each marker for labeling the marker data, hole-filling and removing noises. We justify the method by applying it to generate a short animated film.

Effects of Somatosensory Stimulation on Lower-Limb Joint Kinetic of Older Adult During Stair Descent (계단 하강 보행 동안 체성감각 자극이 노인의 하지 관절 역학에 미치는 영향)

  • Kwak, K.Y.;So, H.J.;Kim, S.H.;Yang, Y.S.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.2
    • /
    • pp.93-104
    • /
    • 2011
  • The purpose of this study was to investigate lower-limb joint torque of the two groups as it changed by somatosensory stimulation during the descent down three stairs of different heights and to describe the difference between the two groups, which are young people group and elderly people group. Subjects of each groups climbed down a stair at four stimulation conditions, which are non-stimulation, tibialis anterior tendon stimulation, achilles tendon stimulation, tibialis anterior - achilles tendon stimulation. Motion capture data were collected using 3D optoelectric motion tracking system that utilizes active infrared LEDs, near infrared sensor and force plate. The obtained motion capture data was used to build 3D computer simulation model. The results show that lower-limb joint torque of the two groups changed with somatosensory stimulation as they descended the stairs and the joint torque of the two groups differed from each other.

Implementation of Motion Analysis System based on Inertial Measurement Units for Rehabilitation Purposes (재활훈련을 위한 관성센서 기반 동작 분석 시스템 구현)

  • Kang, S.I.;Cho, J.S.;Lim, D.H.;Lee, J.S.;Kim, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.47-54
    • /
    • 2013
  • In this paper, we present an inertial sensor-based motion capturing system to measure and analyze whole body movements. This system implements a wireless AHRS(attitude heading reference system) we developed using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. We performed 3D motion capture using the quaternion data calculated. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE of 2.56 degree. The results suggest that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limbs or gait analysis during the post-stroke recovery process.

  • PDF

Evaluation of Accuracy and Inaccuracy of Depth Sensor based Kinect System for Motion Analysis in Specific Rotational Movement for Balance Rehabilitation Training (균형 재활 훈련을 위한 특정 회전 움직임에서 피검자 동작 분석을 위한 깊이 센서 기반 키넥트 시스템의 정확성 및 부정확성 평가)

  • Kim, ChoongYeon;Jung, HoHyun;Jeon, Seong-Cheol;Jang, Kyung Bae;Chun, Keyoung Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.228-234
    • /
    • 2015
  • The balance ability significantly decreased in the elderly because of deterioration of the neural musculature regulatory mechanisms. Several studies have investigated methods of improving balance ability using real-time systems, but it is limited by the expensive test equipment and specialized resources. Recently, Kinect system based on depth data has been applied to address these limitations. Little information about accuracy/inaccuracy of Kinect system is, however, available, particular in motion analysis for evaluation of effectiveness in rehabilitation training. Therefore, the aim of the current study was to evaluate accuracy/inaccuracy of Kinect system in specific rotational movement for balance rehabilitation training. Six healthy male adults with no musculoskeletal disorder were selected to participate in the experiment. Movements of the participants were induced by controlling the base plane of the balance training equipment in directions of AP (anterior-posterior), ML (medial-lateral), right and left diagonal direction. The dynamic motions of the subjects were measured using two Kinect depth sensor systems and a three-dimensional motion capture system with eight infrared cameras for comparative evaluation. The results of the error rate for hip and knee joint alteration of Kinect system comparison with infrared camera based motion capture system occurred smaller values in the ML direction (Hip joint: 10.9~57.3%, Knee joint: 26.0~74.8%). Therefore, the accuracy of Kinect system for measuring balance rehabilitation traning could improve by using adapted algorithm which is based on hip joint movement in medial-lateral direction.

Development of Frozen Shoulder Rehabilitation Robot Based On Motion Capture Data (모션 캡쳐 데이터 기반의 오십견 재활 보조용 로봇의 개발)

  • Yang, Un-Je;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1017-1026
    • /
    • 2012
  • In this study, an exoskeleton-type robot is developed to assist frozen shoulder rehabilitation in a systematic and efficient manner for humans. The developed robot has two main features. The first is a structural feature: this robot was designed to rehabilitate both shoulders of a patient, and the three axes of the shoulder meet at one point to generate human-like ball joint motions. The second is a functional feature that is divided into two rehabilitation modes: the first mode is a joint rehabilitation mode that helps to recover the shoulder's original range of motion by moving the patient's shoulder according to patterns obtained by motion capture, and the second mode is a muscle rehabilitation mode that strengthens the shoulder muscles by suitably resisting the patient's motion. Through these two modes, frozen shoulder rehabilitation can be performed systematically according to the patient's condition. The development procedure is described in detail.