• Title/Summary/Keyword: Motion Capture Data

Search Result 281, Processing Time 0.021 seconds

Kinematic Study of Lower Extremity Movements in Unskilled and Expert Snowboarders During Snowboard Simulator Exercises (스노보드 시뮬레이터 운동 시 전문가와 비전문가의 하지 운동특성 분석)

  • Park, Sunwoo;Ahn, Soonjae;Kim, Jongman;Shin, Isu;Choi, Eunkyoung;Kim, Youngho
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.109-114
    • /
    • 2015
  • In this study, joint angles of the lower extremity and tibial acceleration and angular velocity were measured during a snowboard simulator exercises in order to evaluate the skill of snowboarders. Ten unskilled and ten expert snowboarders were recruited for the study. A three-dimensional motion capture system and two inertial sensor modules were used to acquire joint movements, acceleration and angular velocity of the lower extremities during snowboard simulator exercises. Pattern variations were calculated to assess variations in the snowboard simulator motion of unskilled and expert snowboarders. Results showed that expert snowboarders showed greater range of motion in joint angles and greater peak to peak amplitude in acceleration and angular velocity for tibia than unskilled snowboarders. The unskilled snowboarders did not show symmetrical shape(same magnitude but opposite direction) in tibial angular velocity during two edge turns in snowboard simulator exercises. The expert snowboarders showed smaller pattern variations for joint angle of lower extremity, tibial acceleration and tibial angular velocity than unskilled snowboarders. Inertial sensor data and pattern variations during the snowboard simulator exercises could be useful to evaluate the skill of snowboarders.

A Study on Stride-to-stride Variability by Treadmill Walking (트레드밀을 이용한 보행간 Variability 분석에 관한 연구)

  • Choi, Jin-Seung;Kang, Dong-Won;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • The purpose of this study was to investigate the difference in the stride-to-stride variability between two treadmill conditions; traditional treadmill and special treadmill whose speed can be adjusted automatically by subject's walking speed. Eight male subjects (25.1 years, 172.7 cm, 66.6 kg) were participated in treadmill walking experiment. First, preferred walking speed (PWS) of each subject was determined. Second, each subject performed walking experiment with fixed PWS condition and with free PWS condition for 10 minutes. 3D motion capture system (Motion analysis Corp., USA) with 6 cameras was used to collect motion data with sampling frequency of 120Hz. Temporal and spatial variables for stride-to-stride variability were calculated. Coefficient of variance (CV) which quantifies the amount of variability and Detrended Fluctuation Analysis (DFA) which explains the structure (self-similarity) of the variability were used for analysis. Results showed that the amount of variability during free PWS condition was greater than that of fixed PWS condition. DFA results showed that there was a statistical difference between two treadmill conditions for the variables of step length, stance time, and double support time. From these results, it is possible that traditional treadmill study might give incorrect conclusion about gait variability study. Further study is necessary to clarify these matters by considering the number of subjects, experimental time, and gait variables for the study of stride-to-stride variability.

Evaluation of Validity and Reliability of Inertial Measurement Unit-Based Gait Analysis Systems

  • Cho, Young-Shin;Jang, Seong-Ho;Cho, Jae-Sung;Kim, Mi-Jung;Lee, Hyeok Dong;Lee, Sung Young;Moon, Sang-Bok
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.872-883
    • /
    • 2018
  • Objective To replace camera-based three-dimensional motion analyzers which are widely used to analyze body movements and gait but are also costly and require a large dedicated space, this study evaluates the validity and reliability of inertial measurement unit (IMU)-based systems by analyzing their spatio-temporal and kinematic measurement parameters. Methods The investigation was conducted in three separate hospitals with three healthy participants. IMUs were attached to the abdomen as well as the thigh, shank, and foot of both legs of each participant. Each participant then completed a 10-m gait course 10 times. During each gait cycle, the hips, knees, and ankle joints were observed from the sagittal, frontal, and transverse planes. The experiments were conducted with both a camera-based system and an IMU-based system. The measured gait analysis data were evaluated for validity and reliability using root mean square error (RMSE) and intraclass correlation coefficient (ICC) analyses. Results The differences between the RMSE values of the two systems determined through kinematic parameters ranged from a minimum of 1.83 to a maximum of 3.98 with a tolerance close to 1%. The results of this study also confirmed the reliability of the IMU-based system, and all of the variables showed a statistically high ICC. Conclusion These results confirmed that IMU-based systems can reliably replace camera-based systems for clinical body motion and gait analyses.

Development of Gait Distance Measurement System Based on Inertial Measurement Units (관성측정장치를 이용한 보행거리 측정 시스템 개발)

  • Lee, K.H.;Kang, S.I.;Cho, J.S.;Lim, D.H.;Lee, J.S.;Kim, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.161-168
    • /
    • 2015
  • In this paper, we present an inertial sensor-based gait distance measurement system using accelerometer, gyroscope, and magnetometer. To minimize offset and gain error of inertial sensors, we performed the calibration using the self-made calibration jig with 9 degrees of freedom. For measuring accurate gait distance, we used gradient descent algorithm to remove gravity error and used analysis of gait pattern to remove drift error. Finally, we measured a gait distance by double-integration of the error-removed acceleration data. To evaluate the performance of our system, we walked 10m in a straight line indoors to observe the improvement of removing error which compared un-calibrated to calibrated data. Also, the gait distance measured by the system was compared to the measurement of the Vicon motion capture system. The evaluation resulted in the improvement of $31.4{\pm}14.38%$(mean${\pm}$S.D.), $78.64{\pm}10.84%$ and $69.71{\pm}26.25%$ for x, y and z axis, respectively when walked in a straight line, and a root mean square error of 0.10m, 0.16m, and 0.12m for x, y and z axis, respectively when compared to the Vicon motion capture system.

  • PDF

Comparative Analysis of Linear and Nonlinear Projection Techniques for the Best Visualization of Facial Expression Data (얼굴 표정 데이터의 최적의 가시화를 위한 선형 및 비선형 투영 기법의 비교 분석)

  • Kim, Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.9
    • /
    • pp.97-104
    • /
    • 2009
  • This paper describes comparison and analysis of methodology which enables us in order to search the projection technique of optimum for projection in the plane. For this methodology, we applies the high-dimensional facial motion capture data respectively in linear and nonlinear projection techniques. The one core element of the methodology is to applies the high-dimensional facial expression data of frame unit in PCA where is a linear projection technique and Isomap, MDS, CCA, Sammon's Mapping and LLE where are a nonlinear projection techniques. And another is to find out the methodology which distributes in this low-dimensional space, and analyze the result last. For this goal, we calculate the distance between the high-dimensional facial expression frame data of existing. And we distribute it in two-dimensional plane space to maintain the distance relationship between the high-dimensional facial expression frame data of existing like that from the condition which applies linear and nonlinear projection techniques. When comparing the facial expression data which distribute in two-dimensional space and the data of existing, we find out the projection technique to maintain the relationship of distance between the frame data like that in condition of optimum. Finally, this paper compare linear and nonlinear projection techniques to projection high-dimensional facial expression data in low-dimensional space and analyze it. And we find out the projection technique of optimum from it.

Knee Joint Moment during Golf Swing, Drop-landing, and Cutting Maneuver (골프스윙, 드롭랜딩, 컷팅 동작 시 슬관절 모멘트 분석)

  • Kim, Ki-Hyun;Lim, Young-Tae;Park, Jun-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.296-302
    • /
    • 2020
  • The purpose of this study was to assess knee joint loading in the target knee during a golf swing compared to loading rates of high impact activities such as cutting and drop landings. Nine healthy competitive golfers completed golf swings with the target foot both straight and externally rotated 30 degrees, as well as drop landings and cutting maneuvers. Motion capture data was collected at 240 Hz and ground reaction force data was collected at 2400 Hz. The frontal and transverse knee moments were examined using repeated measures ANOVA through SPSS. The abduction moments were higher in golf swings as compared to the other high impact activities (p=.010), while the external rotation moments were lower (p=.003). There were no significant differences between externally rotated and neutral golf swings. These results suggest moments applied to the knee during a golf swing are similar to those applied during a high impact activity.

Predicting BVI Loadings and Wake Structure of the HARTII Rotor Using Adaptive Unstructured Meshes

  • Yu, Dong-Ok;Jung, Mun-Seung;Kwon, Oh-Joon;Yu, Yung-H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • The flow fields around the HARTII rotor were numerically investigated using a viscous flow solver on adaptive unstructured meshes. An overset mesh and a deforming mesh technique were used to handle the blade motion including blade deflection, which was obtain from the HARTII experimental data. A solution-adaptive mesh refinement technique was also used to capture the rotor wake effectively. Comparison of the sectional normal force and pitching moment at 87% radial station between the two cases, with and without the blade deflection, showed that the blade loading is significantly affected by blade torsion. It was found that as the mesh was refined, the strength of tip vortex is better preserved, and the magnitude of high frequency blade loading, caused by blade-vortex interaction (BVI), is further magnified. It was also found that a proper time step size, which corresponds to the cell size, should be used to predict unsteady solutions accurately. In general, the numerical results in terms of the unsteady blade loading and the rotor wake show good agreement with the experimental data.

Method of Automatic Reconstruction and Animation of Skeletal Character Using Metacubes (메타큐브를 이용한 캐릭터 골격 및 애니메이션 자동 생성 방법)

  • Kim, Eun-Seok;Hur, Gi-Taek;Youn, Jae-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.11
    • /
    • pp.135-144
    • /
    • 2006
  • Implicit surface model is convenient for modeling objects composed of complicated surfaces such as characters and liquids. Moreover, it can express various forms of surface using a relatively small amount of data. In addition, it can represent both the surface and the volume of objects. Therefore, the modeling technique can be applied efficiently to deformation of objects and 3D animation. However, the existing implicit primitives are parallel to the axis or symmetrical with respect to the axes. Thus it is not easy to use them in modeling objects with various forms of motions. In this paper, we propose an efficient animation method for modeling various poses of characters according to matching with motion capture data by adding the attribute of rotation to metacube which is one of the implicit primitives.

  • PDF

The test-retest reliability of gait kinematic data measured using a portable gait analysis system in healthy adults

  • An, Jung-Ae;Byun, Kyung-Seok;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.3
    • /
    • pp.25-34
    • /
    • 2020
  • Background: Gait analysis is an important measurement for health professionals to assess gait patterns related to functional limitations due to neurological or orthopedic conditions. The purpose of this study was to investigate the reliability of the newly developed portable gait analysis system (PGAS). Design: Cross-sectional design. Test-retest study. Methods: The PGAS study was based on a wearable sensor, and measurement of gait kinematic parameters, such as gait velocity, cadence, step length and stride length, and joint angle (hip, knee, and ankle) in stance and swing phases. The results were compared with a motion capture system (MCS). Twenty healthy individuals were applied to the MCS and PGAS simultaneously during gait performance. Results: The test-retest reliability of the PGAS showed good repeatability in gait parameters with mean intra-class correlation coefficients (ICCs) ranging from 0.840 to 0.992, and joint angles in stance and swing phase from 0.907 to 0.988. The acceptable test-retest ICC was observed for the gait parameters (0.809 to 0.961), and joint angles (0.800 to 0.977). Conclusion: The results of this study indicated that the developed PGAS showed good grades of repeatability for gait kinematic data along with acceptable ICCs compared with the results from the MCS. The gait kinematic parameters in healthy subjects can be used as standard values for adopting this PGAS.

Dynamic Characterization of Fall for Development of Fracture Prevention System (골절 방지 시스템의 개발을 위한 낙상 동적 특성 분석)

  • Kim, Seong-Hyun;Kim, Yong-Yook;Kwon, Tae-Kyu;Kim, Dong-Wook;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.811-816
    • /
    • 2007
  • The social activities of the elderly have been increasing as our society progresses toward an aging society. As their activities are increased, the occurrence of falls that could lead to fractures are increased. Falls are serious health hazards to the elderly and we need more thorough understanding of falls including the progress of falls and the impact area in various fall directions. Many of the traditional methods of falls research dealt with voluntary falls by younger subject since older subject can easily get fracture from voluntary falls. So, it has been difficult to get exact data about falls of the elderly. Here, we tried to capture the characteristics of the movements of major joints using three dimensional motion capture system during falls experiments using a moving mattress that can safely induce unexpected falls. Healthy younger subjects participated in the actual falls experiment and the moving mattress was actuated by a pneumatic system. The kinematic parameters such as velocities and accelerations of major segments were imported to a computer simulation environment and falls to hard surfaces were simulated in a computational environment using a realistic human model of aged persons. The simulation was able to give approximations to contact forces which can occur during actual falls.