• Title/Summary/Keyword: Motion Capture Data

Search Result 281, Processing Time 0.033 seconds

Classification of Behavioral Lexicon and Definition of Upper, Lower Body Structures in Animation Character

  • Hongsik Pak;Suhyeon Choi;Taegu Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.103-117
    • /
    • 2023
  • This study focuses on the behavioural lexical classification for extracting animation character actions and the analysis of the character's upper and lower body movements. The behaviour and state of characters in the animation industry are crucial, and digital technology is enhancing the industry's value. However, research on animation motion application technology and behavioural lexical classification is still lacking. Therefore, this study aims to classify the predicates enabling animation motion, differentiate the upper and lower body movements of characters, and apply the behavioural lexicon's motion data. The necessity of this research lies in the potential contributions of advanced character motion technology to various industrial fields, and the use of the behavioural lexicon to elucidate and repurpose character motion. The research method applies a grammatical, behavioural, and semantic predicate classification and behavioural motion analysis based on the character's upper and lower body movements.

Biomechanical Analysis and Evaluation Technology Using Human Multi-Body Dynamic Model (인체 다물체 동역학 모델을 이용한 생체역학 분석 및 평가 기술)

  • Kim, Yoon-Hyuk;Shin, June-Ho;Khurelbaatar, Tsolmonbaatar
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.494-499
    • /
    • 2011
  • This paper presents the biomechanical analysis and evaluation technology of musculoskeletal system by multi-body human dynamic model and 3-D motion capture data. First, medical image based geometric model and material properties of tissue were used to develop the human dynamic model and 3-D motion capture data based motion analysis techniques were develop to quantify the in-vivo joint kinematics, joint moment, joint force, and muscle force. Walking and push-up motion was investigated using the developed model. The present model and technologies would be useful to apply the biomechanical analysis and evaluation of human activities.

Algorithm for Simplification of Motion Capture Data using Motion Property (움직임 특성을 이용한 모션 캡쳐 데이터의 간략화 알고리즘)

  • 이광수;황보택근
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11b
    • /
    • pp.621-625
    • /
    • 2003
  • 최근 유ㆍ무선 환경을 기반으로 하는 온라인 게임 및 메신저 서비스 등에서 아바타를 활용한 서비스가 증가하고 있으며 3D 아바타의 움직임을 표현하기 위한 3D 애니메이션에서는 사실적인 움직임을 표현하기 위해서 모션 캡쳐 데이터를 많이 사용하고 있다. 본 연구에서는 모션 캡쳐 데이터의 크기를 줄이기 위한 기법으로 모션 캡쳐 데이터를 움직임 특성에 대하여 분석하여 추출된 특징점을 이용하여 간략화하는 기법과 간략화된 모션 데이터를 본래의 데이터로 복원하는 기법을 제안한다.

  • PDF

The Aerodynamic Characteristics by the Insect Wing Tip Trajectory in Hovering Flight (정지 비행에서의 곤충 날개 궤적에 따른 공기역학적 특성)

  • Cho, Hun-Kee;Joo, Won-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.506-511
    • /
    • 2009
  • Insect flight is adapted to cope with each circumstance by controlling a variety of the parameters of wing motion in nature. Many researchers have struggled to solve the fundamental concept of insect flight, but it has not been solved yet clearly. In this study, to find the most effective flapping wing dynamics, we conducted to analyze CFD data on fixing some of the optimal parameters of wing motion such as stoke amplitude, flip duration and wing rotation type and then controlled the deviation angle by fabricating wing tip motion. Although all patterns have the similar value of lift coefficient and drag coefficient, pattern A(pear-shape type) indicates the highest lift coefficient and pattern H(pear-shape type) has the lowest lift coefficient among four wing tip motions and three deviation angles. This result suggest that the lift and drag coefficient depends on the angle of attack and the deviation angle combined, and it could be explained by delayed stall and wake capture effect.

The Effect of Kinesio Taping on the Quadriceps Femoris to the Gait Characteristics (대퇴사두근에 키네시오 테이핑 적용이 보행특성에 미치는 효과)

  • Jung, Byeong-Ok
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.3
    • /
    • pp.65-72
    • /
    • 2008
  • Background : The purpose of present study was to investigate the effect of quadriceps femoris taping in normal gait using 3D motion capture technique. Method : Twenty healthy volunteers, have no musculoskeletal problems, were recruited as subjects for this study. In experimental group, 20 healthy young(males 10 and females 10) were included. The subjects were assessed during two conditions: control tape(no muscle stretched) and quadriceps (muscle stretched)taping application. To obtain the dynamic data, we captured the motion of subject attached markers without taping during repeated gaits five times or more in 7 m Capture volume of gait analysis center. The result was obtained as a mean value in three times. After taping on quadriceps femoris, the same procedure was carried out. Statistical analysis were performed using statistical software packagess SPSS WIN 12.0(SPSS, Chicago, IL, USA). Differences were tested for statistical significance using paired t-test, independent t-test, chi-squared test for comparisons between the muscle stretched and no muscle stretched. Results : The date of 20 subjects who carried out the whole experimental course were statistically analyzed. 1. gait velocity was showed that muscle stretched group had more significantly increased than no muscle stretched group(p<.05). 2. step length was showed that muscle stretched group had more significantly increased than no muscle stretched group(p<.05). 3. cadens was showed that muscle stretched group had more significantly increased than no muscle stretched group(p<.05). Conclusion : kinesio taping on quadriceps femoris promoted cadence, gait velocity, step length in normal subject (muscle stretched) group.

  • PDF

An Efficient Generation of Walking and Running Motion on Various Terrains (다양한 지형에서의 걷기와 달리기 동작의 효율적 생성)

  • Song Mi-Young;Cho Hyung-Je
    • The KIPS Transactions:PartB
    • /
    • v.13B no.2 s.105
    • /
    • pp.187-196
    • /
    • 2006
  • In 3D animation most people adjust the moving motion of their characters on various terrains by using motion data acquired with the motion capture equipment. The motion data can be used to present real human motions naturally, but the data must be captured again to apply to the different terrains from those given at acquiring mode. In addition, there would be a difficulty when applying the data to other characters, in that case the motion data must be captured newly or the existing motion data must be heavily edited manually. In this paper we propose a unified method to generate human motions of walking and running for various terrains such as flat plane, inclined plane, stairway and irregular face. With these methods we are able to generate human motions controlled by the parameters : body height, moving speed, stride, etc. In the proposed methods, the positions and angles of joint can be calculated by using inverse kinematics, and we calculate the trajectory of the swing leg and pelvis according to the cubic spline. With these methods we were presented moving motions using a model of a human body.

Reinforcement Learning of Bipedal Walking with Musculoskeletal Models and Reference Motions (근골격 모델과 참조 모션을 이용한 이족보행 강화학습)

  • Jiwoong Jeon;Taesoo Kwon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.1
    • /
    • pp.23-29
    • /
    • 2023
  • In this paper, we introduce a method to obtain high-quality results at a low cost for simulating musculoskeletal characters based on data from the reference motion through motion capture on two-legged walking through reinforcement learning. We reset the motion data of the reference motion to allow the character model to perform, and then train the corresponding motion to be learned through reinforcement learning. We combine motion imitation of the reference model with minimal metabolic energy for the muscles to learn to allow the musculoskeletal model to perform two-legged walking in the desired direction. In this way, the musculoskeletal model can learn at a lower cost than conventional manually designed controllers and perform high-quality bipedal walking.

MultiFormat motion picture storage subsystem using DirectShow Filters for a Mutichannel Visual Monitoring System (다채널 영상 감시 시스템을 위한 다중 포맷 동영상 저장 DirectShow Filter설계 및 구현)

  • 정연권;하상석;정선태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.113-116
    • /
    • 2002
  • Windows provides Directshow for efficient multimedia streaming processings such as multimedia capture, storage, display and etc. Presently, many motion picture codecs and audio codecs are made to be used in Directshow framework and Windows also supports many codecs (MPEG4, H,263, WMV, WMA, ASF, etc.) in addition to a lot of useful tools for multimedia streaming processing. Therefore, Directshow can be effectively utilized for developing windows-based multimedia streaming applications such as visual monitoring systems which needs to store real-time video data for later retrieval. In this paper, we present our efforts for developing a Directshow Filter System supporting storage of motion pictures in various motion picture codecs. Our Directshow Filter system also provides an additional functionality of motion detection.

  • PDF

Motion characteristics of a floating wave energy converter with wave activating body type

  • Kim, Sung-soo;Lee, Jae-chul;Kang, Donghoon;Lee, Soon-sup
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.244-255
    • /
    • 2019
  • Interest in renewable energy has been increasing in recent years for many reasons, and there have been many studies on new types of wave energy converters and mechanisms for them. However, in this paper, motion characteristics of a wave energy converter with a wave activating body type is studied with an experiment. In order to conduct the experiment, a simple wave activating body type's wave energy converter is proposed. Experimental variations consist of connection type and location. The connection type controls the rotation motions of structures, and the connection location controls the distance between structures. The movement of floating structures, such as rotation, velocity, and acceleration, is measured with a potentiometer and a motion capture camera. Using the recorded data, the motion characteristics derived from the experimental variations are investigated.

An Implementation of Taekwondo Action Recognition System using Multiple Sensing (멀티플 센싱을 이용한 태권도 동작 인식 시스템 구현)

  • Lee, Byong Kwon
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.436-442
    • /
    • 2016
  • There are a lot of sports when you left the victory and the defeat of the match the referee subjective judgment. In particular, TaeKwonDo pumse How accurate a given action? Is important. Objectively evaluate the subjective opinion of victory and defeat in a sporting event and the technology to keep as evidence is required. This study was implemented a system for recognizing Taekwondo executed through the number of motion recognition device. Step Sensor also used to detect a user's location. This study evaluated the rate matching the standard gesture data and the motion data. Through multiple gesture recognition equipment was more accurate assessment of the Taekwondo action.