• Title/Summary/Keyword: Morula

Search Result 306, Processing Time 0.031 seconds

Changes in Oxygen Consumption Rates of Embryos in Korean Cattle (한우 수정란의 발달 단계별 산소 소비량 변화)

  • Choe, Chang-Yong;Cho, Sang-Rae;Son, Jun-Kyu;Choi, Sun-Ho;Cho, Chang-Yeon;Kim, Jae-Bum;Kim, Sung-Jae;Kang, Da-Won;Son, Dong-Soo
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.231-235
    • /
    • 2009
  • Oxygen consumption has been regarded as a useful indicator for assessment of mammalian embryo quality. However, there was no standard criterion to measure the oxygen consumption of embryos. Here, we measured oxygen consumption of bovine embryos at various developmental stages was measured using a scanning electrochemical microscopy (SECM). We found that the oxygen consumption significantly increased in blastocyst-stage embryos compared to other stage embryos (from 2-cell-stage to morula-stage), indicating that oxygen consumption reflects the cell number ($5.2{\sim}7.6{\times}10^{14}/mol\;s^{-1}$ versus $1.2{\sim}2.4{\times}10^{14}/mol\;s^{-1}$, p<0.05). In the morula-stage embryos, the oxygen consumption of in vivo derived embryos was significantly higher than that of in vitro produced embryos ($4.0{\times}10^{14}/mol\;s^{-1}$ versus $2.4{\times}10^{14}/mol\;s^{-1}$, p<0.05). However, there was no significant difference in consumption of oxygen by in vivo and in vitro-derived bovine blastocyst-stage embryos (p>0.05). In the frozen-thawed blastocyst-stage embryos, live embryos showed significantly higher oxygen consumption than dead embryos ($4.7{\times}10^{14}/mol\;s^{-1}$ versus $1.0{\times}10^{14}/mol\;s^{-1}$, p<0.05). These results indicate that the measuring oxygen consumption by SECM can be used to evaluate bovine embryo quality.

Effects of Cell Status of Bovine Oviduct Epithelial Cell (BOEC) on the Development of Bovine IVM/IVF Embryos and Gene Expression in the BOEC Used or Not Used for the Embryo Culture

  • Jang, H.Y.;Jung, Y.S.;Cheong, H.T.;Kim, J.T.;Park, C.K.;Kong, H.S.;Lee, H.K.;Yang, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.980-987
    • /
    • 2008
  • The objective of this study was to investigate the effects of cell status of BOEC on development of bovine IVM/IVF embryos and gene expression in BOEC before or after culturing of embryos. The developmental rates beyond morula stage in the BOEC co-culture group was significantly higher than in the control group (p<0.05). In particular, blastocyst production in the BOEC co-culture group (28.3%) was dramatically increased compared with the control group (7.2%). In the in vitro development of bovine IVM/IVF embryos according to cell status, the developmental rates beyond morula stage in the primary culture cell (PCC) co-culture group were the highest of all experimental groups. Expression of genes related to growth (TGF-${\beta}$ EGF and IGFBP), apoptosis (Bax, Caspase-3 and p53) and antioxidation (CuZnSOD, MnSOD, Catalase and GPx) in different status cells of BOEC for embryo culture was detected by RT-PCR. While EGF gene was detected in isolated fresh cells (IFC) and PCC, TGF-${\beta}$ and IGFBP were found in IFC or PCC after use in the embryo culture, respectively. Caspase-3 and Bax genes were detected in all experimental groups regardless of whether the BOEC was used or not used in the embryo culture. However, p53 gene was found in IFC of both conditions for embryo culture and in frozen/thawed culture cells (FPCC) after use in the embryo culture. Although antioxidant genes examined were detected in all experimental groups before using for the embryo culture, these genes were not detected after use. This study indicated that the BOEC co-culture system used for in vitro culture of bovine IVF embryos can increase the developmental rates, and cell generations and status of BOEC might affect the in vitro development of bovine embryos. The BOEC monolayer used in the embryo culture did not express the growth factors (TGF-${\beta}$ and EGF) and enzymatic antioxidant genes, thereby improving embryo development in vitro.

Effect of Thiol Compounds and Antioxidants on In Vitro Development and Intracellular Glutathione Concentrations of Bovine Embryos Derived from In Vitro Matured and In Vitro Fertilized II. Effect of Antioxidants with Somatic Cells on Development and Intracellular Glutathione Concentrations of Bovine IVM/IVF Embryos (Thiol 화합물과 항산화제 첨가배양이 소 체외수정란의 체외발육과 세포내 Glutathione 농도 변화에 미치는 효과 II. 항산화제 첨가와 체세포 공동배양이 소 체외수정란의 체외발육과 세포내 Glutathione 농도 변화에 미치는 영향)

  • 양부근;박동헌;우문수;정희태;박춘근;김종복;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.4
    • /
    • pp.345-353
    • /
    • 1997
  • Antioxidants and antioxidants with somatic cell co-culture, bovine oviduct epithelial cells(BOEC) and buffalo rat liver cells(BRLC), were studied as a mean of increasing the development and intracellular glutathione(GSH) concnetrations of bovine embryos derived from in vitro matured(IVM) and in vitro fertilized(IVF) oocytes. Cell numbers and intracellular GSH concentrations of blastocysts were also counted. The developmental rate beyond morula stages in CRlaa containing taurine(2.5mM), superoxide dismutase(SOD, 600U) and catalase(250U) were 1%, 75.0%, 64.8% and 62.3%, respectively. The developmental rate in antioxidant groups was significantly higher than in control(P<0.05). The intracellular GSH concentrations of blastocysts cultured in 0, 2.5mM taurine, 600U SOD and 250U catalase were 33.8pM, 39.3pM, 42.3pM and 54.8pM, respectively. This result indicated that the developmental rates and intracellular GSH concentrations of catalase group was significantly higher than any other groups(P<0.05). The developmental capacity in CRlaa plus various antioxidants co-cultured with BOEC were 55.3%(control), 74.1%(2.5mM taurine), 66.7%(600U SOD) and 70.7%(250U catalase) and in CRlaa plus various antioxidants co-cultured with BRLC in control, 2.5mM taurine, 600U SOD and 250U catalase were 63.8%, 75.5%, 71.0% and 73.5%, respectveily, the intracellular GSH concentrations of blastocyst embryos co-cultured with BOEC and BRLC in CRlaa with 0.25mM taurine, 600U SOD and 250U catalase were 73.4pM and 64.4pM, 79.9pM and 67.5pM, 82.3pM and 71.7pM, and 83.0pM and 80.0pM, respectively. Cell numbers of blastocysts were not difference in all experimental groups. These studies indicate that andtioxidants and antioxidant with somatic cell co-culture can increase the proportion of embryo that developed into morula and blastocysts, and the intracellular GSH concentrations of blastocyst embryos.

  • PDF

Various Expression Pattern of Beta-catenin in the Preimplantation Stage of Porcine Embryos

  • Han, Jee-Soo;Koo, Deog-Bon;Shin, Bo-Rami;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.56-56
    • /
    • 2003
  • Beta-catenin is very important in early development including involvement in cell adhesion, cell signaling, and developmental fate specification. Cell-cell interaction is an important process during mammalian embryonic development. In preimplantation embryos, embryonic compaction is the process of increased cellular flattening and adhesion of junctional complexes and results in a polarized distribution. Beta-catenin is associated with embryonic compaction in mammals. Here, we examined the relationship between beta-catenin expression and compaction in porcine embryos derived from in vitro fertilization. First of all, we investigated beta-catenin expression in each embryonic developmental stage and also focused on expression pattern according to full, partial and non-compaction at morula stage. We used the immunocyto-chemical method in this research. To confirm compaction affects on the embryonic development, we compared between compaction and developmental rates to the blastocyst. The result showed that compaction and non-compaction rates were 14.6% and 63.8% at 4 days after IVF, respectively The developmental rates to the blastocyst and their total cell number were 50.9% vs 36.4% and 41.4$\pm$11.5 vs 26.8$\pm$12.7 in compaction and non-compaction groups. Although no difference was detected in the ratio of ICM to total cells between two groups, total cell number of the blastocysts in compaction group was superior to that of the blastocysts in non-compaction group (P<0.05). Expression of beta-catenin appeared in the boundary of membrane surface between blastomeres in 2- and 4-cell stage, and observed irregular pattern from 8-cell to blastocyst stage. We also investigated beta-catenin expression pattern according to the degree of compaction in the 3 groups; full, partial (>50%) and non-compaction. The expression signal in fully compacted embryos was stronger than those of partial and non-compacted embryos. Especially, beta-catenin expression appeared various patterns in morula stage suggesting the aberrant distribution of beta-catenin is affected by compaction patterns. Our results suggest that abnormal beta-catenin expression was affected by embryo quality and further development in porcine embryos in vitro.

  • PDF

DNA Methylation Change of Dnmt1o and Dnmt1s 5'-Region in the Early Porcine Embryo (돼지 초기수정란에서 Dnmt1o와 Dnmt1s 상류 영역의 DNA 메틸화 변화)

  • Kim, Hyun-Mi;Kim, Sung-Woo;Cho, Sang-Rae;Kim, Hyun;Park, Jae-Hong;Cho, Jae-Hyeon;Yang, Boh-Suk;Ko, Yeoung-Gyu
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.281-285
    • /
    • 2011
  • In the present study, we identified differentially methylated region (DMR) upstream of Dnmt1o and Dnmt1s gene in early porcine embryos. Porcine Dnmt1o had at least one DMR which was located between -530 bp to -30 bp upstream from transcription start site of the Dnmt1o gene. DNA methylation analyses of Dnmt1o revealed the DMR to be hypomethylated in oocytes, whereas it was highly methylated in sperm. Moreover, the DMR upstream of Dnmt1o was gradually hypermethylated from oocytes to two cells and dramatically changed in the methylation pattern from four cells to BL stages in an in vivo. In an IVF, the methylation status in the DMR upstream of Dnmt1o was hypermethylated from one cell to eight cells, but demethylated at the Morula and BL stages, indicating that the DNA methylation pattern in the Dnmt1o upstream ultimately changed from stage to stage before the implantation. Next, to elucidate whether DNA methylation status of Dnmt1s upstream is stage-by-stage changed in during porcine early development, we analyzed the dynamics of the DNA methylation status of the Dnmt1s locus in germ cell, or one cell to BL cells. The Dnmt1s upstream was highly methylated in one and eight cells, while less methylated in two, four, morula, and BL cells. Taken together, our data demonstrated that DNA methylation and demethylation events in upstream of Dnmt1o/Dnmt1s during early porcine embryos dramatically occurred, and this change may contribute to the maintenance of genomewide DNA methylation in early embryonic development.

Effects of Quercetin and Genistein on Boar Sperm Characteristics and Porcine IVF Embyo Developments

  • Kim, Tae-Hee;Yuh, In-Suh;Park, In-Chul;Cheong, Hee-Tae;Kim, Jong-Taek;Park, Choon-Keun;Yang, Boo-Keun
    • Journal of Embryo Transfer
    • /
    • v.29 no.2
    • /
    • pp.141-148
    • /
    • 2014
  • Quercetin and genistein, plentifully present in fruits and vegetables, are flavonoid family members that have antioxidative function and plant-derived phytoestrogen activity. The antioxidative effects of quercetin and genistein on boar sperm characteristics and in vitro development of IVF embryo were investigated. The sperm motility was increased by addition of genistein $50{\mu}M$ for 6 hr incubation compared to control (p<0.05). The sperm viability was increased by addition of quercetin 1 and $50{\mu}M$ and genestein 1 and $50{\mu}M$ for 3 hr incubation. In addition, the sperm viability seemed to be increased dose-dependantly by addition of quercetin or genistein 1 and $50{\mu}M$, respectively (p<0.05). The membrane integrities were not increased by quercetin or genistein treatments for 3 hr or 6 hr incubation period except for quercetin $1{\mu}M$ for 3 hr incubation. In mitochondrial activities, addition of quercetin $50{\mu}M$ for 6 hr incubation increased mitochondrial activity but decreased at $100{\mu}M$ concentration compared with control (p<0.05). When porcine IVF embryos were cultured in PZM-3 medium supplemented with low concentrations of quercetin ($1{\sim}10{\mu}M$), the developmental rates to morula and blastocyst increased but significantly decreased at high concentrations of quercetin ($25{\sim}50{\mu}M$). The highest developmental rate to blastocysts among all concentrations of quercetin was shown at quercetin $10{\mu}M$ (p<0.05). The developmental rates to morula or blastocysts at low ($0.01{\sim}1{\mu}M$) and high ($5{\sim}10{\mu}M$) concentrations of genistein were not significantly different among all treatment group and genistein did not affect on IVF embryo development. These results suggest that quercetin and genistein seem to have positive effects at certain concentrations on sperm characteristics such as motility, viability and mitochondrial activity. In addition, low concentrations of quercetin (1, 5 and $10{\mu}M$) in this experiment, seem to have beneficial effect on porcine IVF embryo development but genistein did not affect on it at all given concentrations ($0.01{\sim}10{\mu}M$).

Quality Assay of Human Fetal-Cord Serum for Human IVF-ET with Mouse 2-Cell Embryos (생쥐 2-세포배아에 의한 시험관아기 배양용 대아제대혈청의 절적평가에 관한 연구)

  • Moon, S.Y.;Shin, C.J.;Chung, K.M.;Oh, S.K.;Pang, M.G.;Chang, Y.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.16 no.2
    • /
    • pp.139-146
    • /
    • 1989
  • The purpose of this study was to examine the qualitative variation of human fetal-cord sera (HCS) and to accept the sera in human lVF-ET program. One hundred and sixteenth RCS were tested with 1772 2-cell embryos of F1 (C57BL x CBA) virgin mice, Ten to sixteenth embryos were cultured in m-KRB medium with a aliquot of each serum (10%, v/v) or with bovine serum albumin(O.4%, w/v) as a control medium. Embryonic development were recorded at every 24hr for 4 days by such events as cellular compaction, cavitation, and hatching. In the control groups of eight assays, 98.1%(106/ 108) of 2-ce1l embryos developed above expanded blastocyst and the embryonic development was unified through the tests. But the developmental pattern in medium with each serum was various. Namely, the sera that supported development of 100% 2-cell embryos to above morula, early blastocyst, expanded blastocyst and hatching blastocyst was 45,7%(53/116) , 35.3%(41/116), 15.5%08/116.) and 6.9-%(8/116), respectively. And the sera that supported development of above 80% 2-cell embryos to the each embryonic stage was 92.2% (107/116), 83.6%(97/116), 63.8%(74/116) and 36.2%(42/116), respectively. Meanwhile two kinds of toxic pattern to the embryonic development were observed in some sera. The first pattern is that some sera arrested development of most embryos in pre- or post-stage of morula or blastocyst. The second pattern is that some sera promoted or arrested a part of embryos in the same dish. The ability of serum was depended on the batch of serum. Finally we could accept 69%(80/116) of the tested sera for human IVF-ET program. The base line for acceptance was the ability that supported above 80% 2-ce1l embryos to blastocyst. But some deterious sera were contained in this range. We cut off about 10% of the sera (83.6% , 97/116) that passed the baseline. This final percent of sera was similar to that of grade N of this study.

  • PDF

Differential Influences in Sizes and Cell Cycle Stages of Donor Blastomeres on the Development of Cloned Rabbit Embryos

  • Ju, Jyh-Cherng;Yang, Jyh-Shyu;Liu, Chien-Tsung;Chen, Chien-Hong;Tseng, Jung-Kai;Chou, Po-Chien;Cheng, San-Pao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.15-22
    • /
    • 2003
  • Experiments were conducted to evaluate the effect of blastomere diameters and cell cycle stages on the subsequent development of nuclear transplant rabbit embryos (NT-embryos) using nuclei derived from the 16- or 32-cell stage embryos. All blastomeres and NT-embryos were cultured individually in modified Ham's F-10 medium supplemented with 10% rabbit serum (RS) at $38^{\circ}C$ and 5% $CO_2$ in air. The diameter of blastomeres from 16-cell stage embryos was found twice of those from 32-cell stage (51 vs 27 ${\mu}m$). Significant differences were observed in cleavage rates ($\geq$3 divisions) in the isolated single blastomeres (54 vs 48 for 16-cell; 28 vs 14 for 32-cell, p<0.05), but the fusion rates of oocytes with transferred nuclei were similar between small and large single blastomeres derived from either 16-cell or 32-cell stage embryos. When 16-cell stage blastomeres were used as nuclear donors, cleavage rates ($\geq$3 divisions) of the NT-embryos were greater in the small nuclear donors than in the large donors (73 vs 55%, p<0.05). On the contrary, significantly higher cleavage (43 vs 6%, p<0.05) and developmental rates (14 vs 0%, p<0.05) were observed in the large blastomere nuclear donor group of the 32-cell stage embryos. When the cell cycle stages were controlled by a microtubule polymerization inhibitor (Demicolcine, DEM) or the combined treatment of DEM and Aphidicolin (APH), a DNA polymerase inhibitor, fusion rates were 88-96% for the 16-cell donor group (without DEM treatment), which were greater than the 32-cell donor group (54-58%). Cleavage rates were also greater in the transplants derived from G1 nuclear donor group (93-95%) than those from the DEM and APH combined treatment (73%) for the 16-cell donor group (p<0.05). No significant difference was detected in the morula/blastocyst rates in either donor cell stage (p>0.05). In conclusion, it appeared that no difference in the developmental competence between large and small isolated blastomeres was observed. When smaller 16-cell stage blastomeres were used as nuclear donor, the cleavage rate or development of NT-embryos was improved and was compromised when 32-cell stage blastomeres were used. Therefore, control nuclear stage of the donor cell at $G_1$ phase in preactivated nuclear recipients seemed to be beneficial for the cleavage rate of the reconstructed embryo in the 16-cell transplant, but not for subsequent morula or blastocyst development.

Telomeric Dynamics and Telomerase Activity in Early Bovine Embryos (소의 초기 배 발생단계별 Telomeric DNA 함량 및 Telomerase Activity 분석)

  • Jung, Yei-Hwa;Lee, Soo-Hee;Cho, Sang-Rae;Kong, Il-Keun;Cho, Jae-Dong;Sohn, Sea-Hwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.2
    • /
    • pp.101-109
    • /
    • 2009
  • Objective: This study was carried out to analyze the amount of telomeric DNA and telomerase activity in early bovine embryos. Methods: The amount of telomeric DNA in early bovine embryos at the 8 cell, morula and blastocyst stages was analyzed by Quantitative Fluorescence In Situ Hybridization (Q-FISH) technique using a bovine telomeric DNA probe. Telomerase activity was analyzed by Telomeric Repeat Amplification Protocol (TRAP assay). Results: The relative amount of telomeric DNA in early bovine embryos was gradually increased from 8 cell to blastocyst stage. It was not significantly associated with the grade of embryo quality. While telomerase activity was detected in the early bovine embryos at these stages, it significantly increased at morula stage and showed maximum activity at the blastocyst stage. Conclusion: The amount of telomeric DNA and the telomerase activity of bovine embryos increase during the progression of early embryogenesis, suggesting a positive correlation between telomeric DNA and telomerase activity. The telomerase activity seems to increase to maintain the levels of telomeric DNA through embryo development which are required for extensive cell division.

Effects of Addition of Pyruvate, Lactate, Calcium, and Protein Sources on the Development of Bovine IVF Embryos

  • Lee, S.H.;Lee, J.H.;Chung, G.M.;Im, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.655-660
    • /
    • 1998
  • To produce blastocysts more efficiently, it is required to identity accurately the factors involving embryonic cleavage in the chemically defined medium. Effects of pyruvate, lactate, calcium and protein sources on early cleavage of bovine follicular oocytes were investigated. The percentage of IVF embryos cleaved to ${\geq}$ 2-cell or ${\geq}$ 8-cell was higher in pyruvate (+) and lactate (+) (48 or 14%) than in pyruvate (-) and lactate (-) (22% or 4%), than in pyruvate (+) and lactate (-) (28% or 5%) and than in pyruvate (-) and lactate (+) (40% or 10%). Lactate was more effective than pyruvate during early cleavage of bovine embryos in the chemically defined medium. The percentage of IVF embryo cleaved to ${\geq}$ 2-cell and ${\geq}$ 8-cell in calcium (-) (19 and 6%) was significantly (p < 0.05) lower than in calcium (+) (78 and 45%). The percentage of embryos developed to ${\geq}$ 2-cell showed no significant (p < 0.05) difference among BSA, 1 and 20% FBS (57, 57 and 57%). Also the percentage of A grade embryos developed to ${\geq}$ 2-cell showed no significant (p < 0.05) difference among BSA, 1 and 20% FBS (40, 35 and 28%). The percentage of embryos developed to ${\geq}$ 8-cell showed no significant (p < 0.05) difference among BSA, 1 and 20% FBS (33, 23, and 22%). However, the percentage of A grade embryos developed to ${\geq}$ 8-cell in BSA (24%) was significantly (p < 0.05) higher than in 1 and 20% FBS (13 and 8%). The percentage of embryos developed to ${\geq}$ morula showed no significant (p < 0.05) difference among BSA, 1, 10 and 20% FBS (76, 76, 80 and 68%). The percentage of A grade embryos developed to ${\geq}$ morula in 10% FBS (59%) was significantly (p < 0.05) higher than 20% FBS (43%). The percentage of embryos developed to blastocyst showed no significant (p < 0.05) difference among BSA, 1, 10 and 20% FBS (34, 41, 43 and 32%). However, the percentage of A grade embryos developed to ${\geq}$ blastocysts in 10% FBS (25%) was significantly (p < 0.05) higher than in 20% FBS (8%).