• Title/Summary/Keyword: Morphotrophic phase boundary (MPB)

Search Result 2, Processing Time 0.019 seconds

Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary (강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰)

  • Im, Sungbin;Bu, Sang Don;Jeong, Chang Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Piezoelectric and Dielectric Characteristics of Low Temperature Sintering Pb(Mg1/2W1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 Ceramics With the Substitution of Pb(Mg1/2W1/2)O3 (Pb(Mg1/2W1/2)O3 치환에 따른 저온소결 Pb(Mg1/2W1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 세라믹스의 압전 및 유전특성)

  • Yoo Ju-Hyun;Lee Hyun-Seok;Chung Kwang-Hyun;Jeong Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.417-421
    • /
    • 2006
  • In this study, in order to develop low temperature sintering piezoelectric ceramics for LTCC (Low-Temperature Cofired Ceramic) multilayer piezoelectric actuator, PMW-PMN-PZT ceramics using $0.2wt%\; Li_2CO_3$ and $0.25wt%\;CaCO_3$ as sintering aids were investigated according to the varation of PMW substution. Composition ceramics could be sintered at $900^{\circ}C$ by adding sintering aids. As the amount of PMW substitution increased, the crystal structure of PMW-PMN-PZT ceramics moved from tetragonal phase to rhombohedral phase gradually, and MPB(Morphotrophic Phase Boundary) region appeared at 2 mol% PMW substitution. At the sintering temperature of $900^{\circ}C$, the density, electromechanical coupling factor(kp), mechanical quality factor(Qm), dielectric constant(${\epsilon}r$), piezoelectric constant(d33) and Curie temperature(Tc) of 2 mol% PMW substituted PMW-PMN-PZT ceramics showed the optimal values of $7.88g/cm^3$, 0.58, 1002, 1264, 352 pC/N and $336^{\circ}C$, respectively, for LTCC multilayer piezoelectric actuator application.