• Title/Summary/Keyword: Morphology evolution

Search Result 374, Processing Time 0.034 seconds

On the evolution of the galaxy morphology in the hierarchical universe

  • Lee, Jae-Hyun;Yi, Suk-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.39.2-39.2
    • /
    • 2010
  • We have investigated the evolution of the galaxy morphology in the hierarchical universe taking advantage of Semi-Analytic Model (SAM). It is well known that the galaxy morphology is related to the dynamical and the chemical evolution. This implies that we need to understand overall physical processes in the galaxy to reproduce its morphology. Thus we implemented gradual hot gas stripping of satellite galaxies in a galaxy cluster and recycling of stellar mass losses into our model in order to describe star formation rate of galaxies accurately. To morphologically classify galaxies, the evolution of disc and bulge components is traced carefully. We compute our models based on the dark matter halo merger trees generated by N-body simulations as well as the Extended Press-Schechter (EPS) formalism. We present morphological differences caused by the use of different merger trees.

  • PDF

Progress Report : Research on Detailed Morphology of Cluster Galaxies

  • Oh, Seulhee;Yi, Sukyoung K.;Sheen, Yun-Kyeong;Kyeong, Jaemann;Sung, Eon-Chang;Kim, Minjin;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2014
  • Galaxy morphology is involved complex effects of both secular and non-secular evolution of galaxies. Although it is a final product of a galaxy evolution, it may give a clue for the process that the galaxy suffer. Galaxy clusters are the sites where the most massive galaxies are found, and the most dramatic merger histories are embedded. Morphology study in nearby universe, e.g. Virgo cluster, is well established, but for clusters at z ~ 0.1 it is only focused on bright galaxies due to observational limits. Our optical deep imaging of 14 Abell clusters at z = 0.014 - 0.16 using IMACS f/2 on a Magellan Badde 6.5-m telescope and MegaCam on a 3.8-m CFHT enable to classify detailed morphology. For the galaxies in our data, we investigated their morphology with several criteria related to secular or merger related evolution. Our research on detailed morphology of thousands of galaxies through deep imaging would give a general census of cluster galaxies and help to estimate the evolution of cluster galaxies.

  • PDF

STUDYING THE MORPHOLOGY AND STAR FORMATION OF GALAXIES AS A PROBE OF GALAXY EVOLUTION

  • CHEN, HSUAN-JU;HWANG, CHORNG-YUAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.511-512
    • /
    • 2015
  • Star formation activities dominate the evolution of galaxies. Elliptical galaxies are believed to be old galaxies in the Hubble sequence, and elliptical galaxies at different evolution epochs might have different star formation activities and/or morphologies. We investigate the connection between star formation rates and the morphology of elliptical galaxies. With the Sloan Digital Sky Survey (SDSS) and the Galaxy Zoo, we select a sample of elliptical galaxies by morphology and consider their infrared emission as an index of star formation rate to study the relation between the star formation rates and their morphological properties, such as ellipticities. In addition, we select some nearby spiral galaxies with very low MIR emission to probe the mechanisms of these red spiral galaxies. We display our preliminary results and discuss their implication on the evolution of galaxies in this poster.

Evolution of galaxies through galaxy-galaxy interactions

  • Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.233-233
    • /
    • 2012
  • I review the dependence of galaxy properties on environmental parameters such as the local density, nearest neighbor distance and morphology. We find that a galaxy with an early- or late-type nearest companion within its virial radius tends to be an early or late type, respectively. The morphology of galaxies located in high density regions tends to be the same as that of the ones in low density regions if their luminosity and the nearest neighbor environment are the same. This strongly supports that galaxy morphology and luminosity evolution have been driven mainly by galaxy-galaxy interactions, and the background density affected morphology and luminosity only through the frequency of interactions.

  • PDF

KYDISC program : Galaxy Morphology in the Cluster Environment

  • Oh, Sree;Sheen, Yun-Kyeong;Kim, Minjin;Lee, Joon Hyeop;Kyeong, Jaemann;Ree, Chang H.;Park, Byeong-Gon;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.60.3-61
    • /
    • 2016
  • Galaxy morphology involves complex effects from both secular and non-secular evolution of galaxies. Although it is a final product of galaxy evolution, it gives a clue to the processes that the a galaxy has gone through. Galaxy clusters are the sites where the most massive galaxies are found, and thus the most dramatic merger histories are embedded. Our deep imaging program (${\mu}{\sim}28\;mag\;arcsec^{-2}$), KASI-Yonsei Deep Imaging Survey for Clusters (KYDISC), targets 14 Abell clusters at z = 0.016 - 0.14 using IMACS/Magellan telescope and MegaCam/CFHT to investigate cluster galaxies especially on low surface brightness features related to galaxy interactions. We visually classify galaxy morphology based on criteria related to secular or merger related evolution and find that the morphological mixture of galaxies varies considerably from cluster to cluster. Moreover it depends on the characteristics (e.g. cluster mass) of cluster itself which implies that environmental effects in cluster scale is also an important factor to the evolution of galaxies together with intrinsic (secular) and galaxy merger. Our deep imaging survey for morphological inspection of cluster galaxies with low surface brightness is expected to be a useful basis to understand the nature of cluster galaxies and their internal/external evolutionary path.

  • PDF

Numerical Simulation of Phase Separation in Bulk Hetero-junction Photoactive Layer

  • Hang, Nguyen Thi;Van Thuong, Dinh;Nhat, Hoang Nam;Van Chau, Dinh
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Morphology evolution of the active layer in bulk hetero-junction organic photovoltaic is modeled and visualized. The width of the phase domain can be predicted using the relationship of characteristics length and evolution time of the process. The 3D numerical simulation of the PCBM/P3HT blend morphology evolution with respect to time is presented. It is observed that the domain width of composition phase can be predicted by using the relationship between value of characteristic length R(t) and evolution time t.

IMPACT OF NEIGHBORS IN SDSS GALAXY PAIRS

  • MOON, JUN-SUNG;YOON, SUK-JIN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.469-471
    • /
    • 2015
  • How galaxies are affected by their neighboring galaxies during galaxy-galaxy interactions is a long-standing question. We investigate the role of neighbors in galaxy pairs based on the SDSS data release 7 and the KIAS value-added galaxy catalog. Three groups of galaxies are identified: (a) galaxies with an early-type neighbor, (b) with a late-type neighbor, and (c) isolated ones with no neighbor. We compare their UV + optical colors and $H{\alpha}$ emission as indicators of the recent star-formation rate (SFR). Given that galaxies show systematic differences in SFR as functions of morphology, luminosity, and large-scale environments, we construct a control sample in which the galaxies have the same conditions (in terms of morphology, luminosity, and large-scale environment) except for the neighbor's properties (i.e., morphology, mass, and distance). The results are as follows. (1) Galaxies with a late-type companion demonstrate more enhanced SFR than those with an early-type companion. (2) Galaxies with an early-type neighbor show NUV- and u-band derived SFRs that are even lower than that of isolated galaxies, while they have similar or slightly higher $H{\alpha}$-based SFR compared to isolated ones.

Pollen morphology and character evolution in the subtribe Neoguillauminiinae (Euphorbiaceae)

  • PARK, Ki-Ryong
    • Korean Journal of Plant Taxonomy
    • /
    • v.49 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • A pollen morphological study was conducted using light and scanning electron microscopy involving six species belonging to the subtribe Neoguillauminiinae. Pollen samples from the six species are tricolporate, and the colpi are surrounded by broad margo, with the widest width in the equator, narrower toward the pole, and rounded at the end. Based on the pollen morphology, pollen of the species in the subtribe Neoguillauminiinae were divided into four types: the Neoguillauminia type (T1), the C. collinus type (T2), the C. casuarinoides type (T3) and the C. paucifolius type (T4). The generic divergence between Neoguillauminia and Calycopeplus was supported by the pollen characters of the size, amb and lumina shape. In particular, the traits of rounded shape in the outline of the polar view and circular lumina, which appear only in the pollen grains of N. cleopatra, support the recognition of Neoguillauminia as a monotypic genus. Calycopeplus oligandrus and C. paucifolius had the same reticulate pattern of pollen grains, supporting Forster's hypothesis that these two species are closely related. On the other hand, the close relationship between the morphologically similar C. collinus and C. casuarinoides was not supported by the pollen characters. Within the subtribe there are two equally parsimonious hypotheses regarding the evolution of exine characters. The first consists of two changes of microreticulate through parallel evolution from the primitive reticulate exine, and the second is that the microreticulate pattern is differentiated from the reticulate state and then reversed to reticulate pollen grains.

PROGRESS REPORT: INVESTIGATION OF THE MORPHOLOGY OF CLUSTER GALAXIES

  • OH, SEULHEE;YI, SUKYOUNG K.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.529-530
    • /
    • 2015
  • We investigated the galaxy morphology of 6 Abell clusters at z = 0.0784 - 0.145 based on deep images obtained using MegaCam on the CFHT. For hundreds of galaxies in our data, we classified their morphology based on criteria related to secular or merger related evolution. We found that the morphological mixture of galaxies varies considerably from cluster to cluster. This article contains a general description of our deep imaging campaign and preliminary results for galaxy morphologies in cluster environments.