• Title/Summary/Keyword: Morphological watershed algorithm

Search Result 27, Processing Time 0.025 seconds

Improved Tooth Detection Method for using Morphological Characteristic (형태학적 특징을 이용한 향상된 치아 검출 방법)

  • Na, Sung Dae;Lee, Gihyoun;Lee, Jyung Hyun;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1171-1181
    • /
    • 2014
  • In this paper, we propose improved methods which are image conversion and extraction method of watershed seed using morphological characteristic of teeth on complement image. Conventional tooth segmentation methods are occurred low detection ratio at molar region and over, overlap segmentation owing to specular reflection and morphological feature of molars. Therefore, in order to solve the problems of the conventional methods, we propose the image conversion method and improved extraction method of watershed seed. First, the image conversion method is performed using RGB, HSI space of tooth image for to extract boundary and seed of watershed efficiently. Second, watershed seed is reconstructed using morphological characteristic of teeth. Last, individual tooth segmentation is performed using proposed seed of watershed by watershed algorithm. Therefore, as a result of comparison with marker controlled watershed algorithm and the proposed method, we confirmed higher detection ratio and accuracy than marker controlled watershed algorithm.

Efficient Image Segmentation Using Morphological Watershed Algorithm (형태학적 워터쉐드 알고리즘을 이용한 효율적인 영상분할)

  • Kim, Young-Woo;Lim, Jae-Young;Lee, Won-Yeol;Kim, Se-Yun;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.709-721
    • /
    • 2009
  • This paper discusses an efficient image segmentation using morphological watershed algorithm that is robust to noise. Morphological image segmentation consists of four steps: image simplification, computation of gradient image and watershed algorithm and region merging. Conventional watershed segmentation exhibits a serious weakness for over-segmentation of images. In this paper we present a morphological edge detection methods for detecting edges under noisy condition and apply our watershed algorithm to the resulting gradient images and merge regions using Kolmogorov-Smirnov test for eliminating irrelevant regions in the resulting segmented images. Experimental results are analyzed in both qualitative analysis through visual inspection and quantitative analysis with percentage error as well as computational time needed to segment images. The proposed algorithm can efficiently improve segmentation accuracy and significantly reduce the speed of computational time.

Improved Watershed Image Segmentation Using the Morphological Multi-Scale Gradient

  • Gelegdorj, Jugdergarav;Chu, Hyung-Suk;An, Chong-Koo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2011
  • In this paper, we present an improved multi-scale gradient algorithm. The proposed algorithm works the effectively handling of both step and blurred edges. In the proposed algorithm, the image sharpening operator is sharpening the edges and contours of the objects. This operation gives an opportunity to get noise reduced image and step edged image. After that, multi-scale gradient operator works on noise reduced image in order to get a gradient image. The gradient image is segmented by watershed transform. The approach of region merging is used after watershed transform. The region merging is carried out according to the region area and region homogeneity. The region number of the proposed algorithm is 36% shorter than that of the existing algorithm because the proposed algorithm produces a few irrelevant regions. Moreover, the computational time of the proposed algorithm is relatively fast in comparison with the existing one.

Image Segmentation Using Morphological Operation and Region Merging (형태학적 연산과 영역 융합을 이용한 영상 분할)

  • 강의성;이태형;고성제
    • Journal of Broadcast Engineering
    • /
    • v.2 no.2
    • /
    • pp.156-169
    • /
    • 1997
  • This paper proposes an image segmentation technique using watershed algorithm followed by region merging method. A gradient image is obtained by applying multiscale gradient algorithm to the image simplified by morphological filters. Since the watershed algorithm produces the oversegmented image. it is necessary to merge small segmented regions as wel]' as region having similar characteristics. For region merging. we utilize the merging criteria based on both the mean value of the pixels of each region and the edge intensities between regions obtained by the contour following process. Experimental results show that the proposed method produces meaningful image segmentation results.

  • PDF

Spatio-temporal video segmentation using a joint similarity measure (결합 유사성 척도를 이용한 시공간 영상 분할)

  • 최재각;이시웅;조순제;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1195-1209
    • /
    • 1997
  • This paper presents a new morphological spatio-temporal segmentation algorithm. The algorithm incorporates luminance and motion information simultaneously, and uses morphological tools such as morphological filtersand watershed algorithm. The procedure toward complete segmentation consists of three steps:joint marker extraction, boundary decision, and motion-based region fusion. First, the joint marker extraction identifies the presence of homogeneours regions in both motion and luminance, where a simple joint marker extraction technique is proposed. Second, the spatio-temporal boundaries are decided by the watershed algorithm. For this purposek, a new joint similarity measure is proposed. Finally, an elimination ofredundant regions is done using motion-based region function. By incorporating spatial and temporal information simultaneously, we can obtain visually meaningful segmentation results. Simulation results demonstratesthe efficiency of the proposed method.

  • PDF

Spatio-Temporal Image Segmentation Based on Intensity and Motion Information (밝기 및 움직임 정보에 기반한 시공간 영상 분할)

  • 최재각;이시웅김성대
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.871-874
    • /
    • 1998
  • This paper presents a new morphological spatio-temporal segmentation algorithm. The algorithm incorporates intensity and motion information simultaneously, and uses morphological tools such as morphological filters and watershed algorithm. The procedure toward complete segmetnation consists of three steps: joint marker extraction, boundary decision, and motion-based region fusion. By incorporating spatial and temporal information simultaneously, we can obtain visually meaningful segmentation results. Simulation results demonstrates the efficiency of the proposed method.

  • PDF

A Study on Enhancement of Handwritten Character Image using Binary Watershed Algorithm (Binary Watershed Algorithm을 이용한 필기체 문자 영상 향상에 관한 연구)

  • 이호준;최영규;이상범
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.400-402
    • /
    • 2001
  • 오프라인 필기체 한글 문자인식에서 대부분의 연구들은 영상획득 장비로부터 얻어진 이진영상(Binary image)을 바탕으로 이루어진다. 이 과정 중 영상에 잡음이나 영상패턴의 훼손을 가져오는 경우가 많다. 획이 끊기거나 영상 내 홀(holes)이 발생한 경우 인식에 많은 질적인 문제를 가져온다. 오프라인 필기체 한글 문자인식 과정 중 영상 내 골격을 추출하는 연구는 아직도 많은 난제를 가지고 있다. 또한 골격추출과정은 인식에 많은 영향을 준다. 잡영이 포함된 영상은 잘못된 골격선 추출에 기인한다. 본 논문에 사용된 Binary Watershed Algorithm은 잡영이 포함된 영상개선에 사용하였고, 이 Algorithm은 많은 다양성을 가지고 있어 여러 분야의 응용에 사용되어지고 있다. 본 논문은 이러한 잡영이 포함된 영상의 개선을 통해 기존의 Morphological 세선화 방법과 Zang-Suen 세선화 방법을 통해 골격선 추출을 평가하였다. 여기에는 아직도 자소의 교차 획에 있어서 효과적인 골격선을 추출하는 문제를 가지고 있다.

  • PDF

Individual Tooth Image Segmentation by Watershed Algorithm (워터쉐드 기법을 이용한 개별적 치아 영역 자동 검출)

  • Lee, Seong-Taek;Kim, Kyeong-Seop;Yoon, Tae-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.210-216
    • /
    • 2010
  • In this study, we propose a novel method to segment an individual tooth region in a true color image. The difference of the intensity in RGB is initially extracted and subsequent morphological reconstruction is applied to minimize the spurious segmentation regions. Multiple seeds in the tooth regions are chosen by searching regional minima and a Sobel-mask edge operations is performed to apply MCWA(Marker-Controlled Watershed Algorithm). As the results of applying MCWA transform for our proposed tooth segmentation algorithm, the individual tooth region can be resolved in a CCD tooth color image.

An Image Segmentation method using Morphology Reconstruction and Non-Linear Diffusion (모폴로지 재구성과 비선형 확산을 적용한 영상 분할 방법)

  • Kim, Chang-Geun;Lee, Guee-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.523-531
    • /
    • 2005
  • Existing methods for color image segmentation using diffusion can't preserve contour information, or noises with high gradients become more salient as the number of times of the diffusion increases, resulting in over-segmentation when applied to watershed. This paper proposes a method for color image segmentation by applying morphological operations together with nonlinear diffusion For an input image, transformed into LUV color space, closing by reconstruction and nonlinear diffusion are applied to obtain a simplified image which preserves contour information with noises removed. With gradients computed from this simplified image, watershed algorithm is applied. Experiments show that color images are segmented very effectively without over-segmentation.

A hierarchical semantic video object racking algorithm using mathematical morphology

  • Jaeyoung-Yi;Park, Hyun-Sang;Ra, Jong-Beom
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1998.06b
    • /
    • pp.29-33
    • /
    • 1998
  • In this paper, we propose a hierarchical segmentation method for tracking a semantic video object using a watershed algorithm based on morphological filtering. In the proposed method, each hierarchy consists of three steps: First, markers are extracted on the simplified current frame. Second, region growing by a modified watershed algorithm is performed for segmentation. Finally, the segmented regions are classified into 3 categories, i.e., inside, outside, and uncertain regions according to region probability values, which are acquired by the probability map calculated from a estimated motion field. Then, for the remaining uncertain regions, the above three steps are repeated at lower hierarchies with less simplified frames until every region is decided to a certain region. The proposed algorithm provides prospective results in video sequences such as Miss America, Clair, and Akiyo.

  • PDF