• Title/Summary/Keyword: Morphological Structure

Search Result 889, Processing Time 0.026 seconds

Micromorphological Features of Pan Horizon in the Soils Derived from Different Parent Materials

  • Zhang, Yongseon;Sonn, Yeon-Kyu;Moon, Yong-Hee;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.242-248
    • /
    • 2014
  • We have five soil series of pan soils in South Korea out of 391 series: Gangreung, Bugog, Yeongog, Jangweon, and Pogog. Productivity decreases in pan soils as pan horizons impede percolation and capillary rise of water and interrupt root extension. This study was performed to investigate pedogenic processes of pan soils mainly located in footslope and river terrace by analyzing physicochemical properties and soil micro-morphology. Korean pan soils belong to Alfisols, Ultisols, or Inceptisols and have udic or aquic soil moisture regime, mesic temperature regime, and mixed mineral substances. Texture of pan horizons selected for the present study was mainly silty clay loam with clay contents ranging from 26.3 to 45.3%. Bulk density of the pan horizons ranged from 1.4 to $2.1Mg\;m^{-3}$ and their soil structure were subangular or angular structure. In terms of micro-morphological structure, Bt horizon of Gangreung series was formed as platy and striated b-fabric structure possibly affected by uplift of coastal terrace following clay sedimentation by flood. Jangweon series showed micro-morphology of massive structure and crystallic b-fabric as macropores between coarse debris established by debris fall in slope were filled with silt-sized particles. The Bt horizons having massive structure and striated b-fabric in Yeongog, Pogog, and Bugog series implies that those horizons experienced horizontal mass flow after clay accumulation.

Auto-Segmentation Algorithm For Liver-Vessel From Abdominal MDCT Image (복부 MDCT 영상으로부터 간혈관 자동 추출 알고리즘)

  • Park, Seong-Me;Lee, You-Jin;Park, Jong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.430-437
    • /
    • 2010
  • It is essential for living donor liver transplantation that surgeon must understand the hepatic vessel structure to improve the success rate of operation. In this paper, we extract the liver boundary without other surrounding structures such as heart, stomach, and spleen using the contrast enhanced MDCT liver image sequence. After that, we extract the major hepatic veins (left, middle, right hepatic vein) with morphological filter after review the basic structure of hepatic vessel which reside in segmented liver image region. The purpose of this study is provide the overall status of transplantation operation with size estimation of resection part which is dissected along with the middle hepatic vein. The method of liver extraction is as follows: firstly, we get rid of background and muscle layer with gray level distribution ratio from sampling process. secondly, the coincident images match with unit mesh image are unified with resulted image using the corse coordinate of liver and body. thirdly, we extract the final liver image after expanding and region filling. Using the segmented liver images, we extract the hepatic vessels with morphological filter and reversed the major hepatic vessels only with a results of ascending order of vessel size. The 3D reconstructed views of hepatic vessel are generated after applying the interpolation to provide the smooth view. These 3D view are used to estimate the dissection line after identify the middle hepatic vein. Finally, the volume of resection region is calculated and we can identify the possibility of successful transplantation operation.

Morphological Differences of the Flight Muscle among Xylocopa appendiculata circumvolans Smith, Davidins lunatus B. and Serrognathus platymelus castanicdor M. (어리호박벌, 쇠측범잠자리, 넓적사슴벌레의 날개근육의 형태학적 차이)

  • Moon, Hye-Jung;Ban, Young-Hun;Cho, Hyun-Gug;Park, Won-Hark;Lee, Jong-Wook
    • Applied Microscopy
    • /
    • v.32 no.3
    • /
    • pp.291-301
    • /
    • 2002
  • The present study was performed to compare the morphological differences of flight muscles among 3 species from insects (Xylocopa appendiculata circumvolans Smith, Davidins lunatus B. and Serrognathus platymelus castanicdor M.) by investigating ultrastructural observation and stereological analysis. Xylocopa appendiculata circumvolans Smith has the most flight hours. In addition, the number and arrangement of mitochondria and the structure of sarcomere were similar to those of vertebrates. However sarcomere structure of Davidins lunatus B. was irregular and the sarcomere length was longer than that of Xylocopa appendiculata circumvolans Smith. In Serrognathus platymelus castanicdor M. which has the least flight hours, the length of sarcomere appeared longer than that of Davidins lunatus B. In results of stereological analysis, Serrognathus platymelus castanicdor M. had the highest volume density of myofibrils in all species. The volume and numerical density of mitochondria and the volume density of sarcoplasmic reticulum were highest Xylocopa appendiculata circumvolans Smith and Davidins lunatus B. respectively. This study suggests that the flight hours and flight pattern by different ecological habitats may cause the morphological changes of flight muscle.

Analysis of Thermal Degradation Mechanism by Infrared High-speed Heating of CF-PEKK Composites in Hot Press Forming (핫프레스 공정 기반 CF-PEKK 복합재의 근적외선 고속가열에 의한 열적 열화 반응의 메커니즘 분석)

  • Lee, Kyo-Moon;Park, Soo-Jeong;Park, Ye-Rim;Park, Seong-Jae;Kim, Yun-Hae
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.93-97
    • /
    • 2022
  • The application of infrared heating in the hot press forming of the thermoplastic composites is conducive to productivity with high-speed heating. However, high energy, high forming temperature, and high-speed heating derived from infrared heating can cause material degradation and deteriorate properties such as re-melting performance. Therefore, this study was conducted to optimize the process conditions of the hot press forming suitable for carbon fiber reinforced polyetherketoneketone(CF/PEKK) composites that are actively researched and developed as high-performance aviation materials. Specifically, the degradation mechanisms and properties that may occur in infrared high-speed heating were evaluated through morphological and thermal characteristics analysis and mechanical performance tests. The degradation mechanism was analyzed through morphological investigation of the crystal structure of PEKK. As a result, the size of the spherulite decreased as the degradation progressed, and finally, the spherulite disappeared. In thermal characteristics, the melting temperature, crystallization temperature and heat of crystallization tend to decrease as degradation progresses, and the crystal structure disappeared under long-term exposure at 460℃. In addition, the low bonding strength was observed on the degraded surface, and the bonding surfaces of PEKK did not melt intermittently. In conclusion, it was confirmed that the CF/PEKK composite material degraded at 420℃ in the infrared high-speed heating. Furthermore, the spherulite experienced morphological changes and the re-melting properties of thermoplastic materials were degraded.

Molecular Structure and Gelatinization Properties of Turnip Starch (Brassica rapa L.)

  • Kim, Nam-Hee;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.470-473
    • /
    • 2005
  • Starch was isolated from turnip (Brassica rapa L.), and to elucidate the structure-function relationship its structural and physical properties were characterized. Morphological structure of the starch was analyzed by SEM (Scanning Electron Microscopy). Most of the starch granules were spherical in shape with diameter ranging from 0.5-10mm. Apart from larger granules ($<10\;{\mu}m$) which dominated the population size of turnip starch, significant amount of small ($0.5-2\;{\mu}m$) and mid-size granules (${\sim}\;{\mu}m$) were also detected. It was revealed that presumably, erosion damages occurred due to the attack of amylase-type enzymes on the surface of some granules. Branch chain-length distribution was analyzed by HPAEC (High-Performance Anion-Exchange Chromatography). The chain-length distribution of turnip starch revealed a peak at DP12 with obvious shoulder at DP18-21. The weight-average chain length ($CL_{avg}$) was 16.6, and a large proportion (11.8%) of very short chains (DP6-9) was also observed. The melting properties of starch were determined by DSC (Differential Scanning Calorimetry). The onset temperature ($T_o$) and the enthalpy change (${\Delta}H$) of starch gelatinization were $50.5^{\circ}C$ and 12.5 J/g, respectively. The ${\Delta}H$ of the retrograded turnip starch was 3.5 J/g, which indicates 28.2% of recrystallization. Larger proportion of short chains as well as smaller average chain-length can very well explain relatively lower degree of retrogradation in turnip starch.

Enhancement of Analyte Ionization in Desoprtion/Ionization on Porous Silicon (DIOS)-Mass Spectrometry(MS)

  • Lee Chang-Soo;Kim Eun-Mi;Lee Sang-Ho;KIm Min-Soo;Kim Yong-Kweon;Kim Byug-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.212-217
    • /
    • 2005
  • Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a relatively new laser desorption/ionization technique for mass spectrometry without employing an organic matrix. This present study was carried to survey the experimental factors to improve the efficiency of DIOS-MS through electrochemical etching condition in structure and morphological properties of the porous silicon. The porous structure of silicon structure and its properties are crucial for the better performance of DIOS-MS and they can be controlled by the suitable selection of electrochemical conditions. The fabrication of porous silicon and ion signals on DIOS-MS were examined as a function of silicon orientation, etching time, etchant, current flux, irradiation, pore size, and pore depth. We have also examined the effect of pre- and post-etching conditions for their effect on DIOS-MS. Finally, we could optimize the electrochemical conditions for the efficient performance of DIOS-MS in the analysis of small molecule such as amino acid, drug and peptides without any unknown noise or fragmentation.

Effects of applied voltages on nano-structures of anodized metal oixdes and their electrochromic applications (인가 전압에 따른 양극산화된 금속 산화물의 나노 구조 변화와 전기변색 응용)

  • Kim, Tae-Ho;Lee, Jae-Uk;Kim, Byeong-Seong;Jeon, Hyeong-Jin;Na, Yun-Chae
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.115.1-115.1
    • /
    • 2016
  • Electrochemical anodization has been interested due to its useful way for the nano-scale architecture of metal oxides obtained from a metal substrate. By using this method, it is easy to control the morphology of the oxide materials by controlling electrochemical conditions. Among oxide materials obtained from the transition metals such as Ti, V, W, etc., in this paper, the morphological study of anodized $TiO_2$ was employed at various voltage conditions in fluoric based electrolyte, and the effects of applied voltage (sweep rate and retention time) on the tube morphologies were investigated. Furthermore, by using anodization of tungsten substrate (W), we fabricated the porous structure of $WO_3$ and provided merits of tailored structure for the hybridization of inorganic and organic materials as electrochromic (EC) applications. The hybrid porous $WO_3$ shows multi-chromic properties during the EC reactions at specific voltage conditions. From these results, the anodization process with tailoring nano-structure is one of the promising methods for EC applications.

  • PDF

Identification of Fungus-infected Tomato Seeds Based on Full-Field Optical Coherence Tomography

  • Bharti, Bharti;Yoon, Taeil;Lee, Byeong Ha
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.571-576
    • /
    • 2019
  • The morphological changes of anthracnose (fungus) -infected tomato seeds have been studied to identify the infection and characterize its effect. Full-field optical coherence tomography (FF-OCT) has been utilized as a nondestructive but efficient modality for visualizing the effects of fungal infection. The cross-sectional images extracted from a stack of en face FF-OCT images showed significant changes with infection in the seed structure. First of all, the seed coat disappeared with the infection. The thickness of the seed coat of a healthy seed was measured as 28.2 ㎛, with a standard deviation of 1.2 ㎛. However, for infected seeds the gap between surface and endosperm was not appreciably observed. In addition, the measurements confirmed that the dryness of seeds did not affect the internal seed structure. The reconstructed three-dimensional (3D) image revealed that the permeability of the seed coat, which plays the vital role of protecting the seed, is also affected by the infection. These results suggest that FF-OCT has good potential for the identification of fungus-infected tomato seeds, and for many other tasks in agriculture.

Fabrication and Electro-photolysis Property of Carbon Nanotubes/Titanium Composite Photocatalysts for Methylene Blue

  • Zhang, Feng-Jun;Chen, Ming-Liang;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1798-1804
    • /
    • 2009
  • In this study, we have studied on improved performance of carbon nanotubes/titanium (CNT/TiO2) structure electrode for methylene blue (MB). The composite electrodes consisting of CNTs and a titanium oxide matrix with phenol resin binder was fabricated with a mixture method. The chemical and morphological structure of CNT/Ti$O_2$ composites were characterized by means of BET surface area, X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Vis absorption technique, Raman spectroscopy and energy dispersive X-ray (EDX). The electrode showed a remarkably enhanced performance for MB oxidation under UV illumination with or without electro-chemical reaction (ECR). Such a remarkably improved performance of the CNT/Ti$O_2$ structure electrode might be due to the enhanced MB oxidation by electro- and photo-generated electrons and holes in the CNTs and Ti$O_2$ under UV illumination with or without ECR.

Ultrastructure and Mrphological Fatures of Mcoplasma pneumoniae during Clture Dvelopment (Mycoplasma Pnemoniae 세포의 발달과정 중 미세구조 및 형태학적 특징)

  • Kim, Chi-Kyung;Pfister Robert M.;Somerson Norman L.
    • Korean Journal of Microbiology
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 1979
  • Mycoplasma pneumoniae strain CL-s attached to broth-covered surfaces was examined sequentially during growth from single cells for morphologic and ultrastructural changes using several different electron microscopic techniques. Changes in morphology revealed both round and spindle shapes and observation of cell transitions suggested some type of morphological cycle. The round to-ovoid cells observed in the early stages of growth appeared to be viable, and morphologically and ultrastructurally different from the spherical fors which were produced during the latter stage of growth. The spindle segments were detected appeared to be structurally the same as the terminal cored structure seen in thin sections and may be a growing point or an attachment site of the cell. A tubular structure was observed in the core of the terminal structure and a microtubule-like element appeared to bridge between some spindle segments. A matrix sunstance was observed around single cells as well in the intercellular space of the colonies prepared by critical point metrical triple-layered cytoplasmic mermbranes, surfaces, of which appeared to be structurally different each other, were observed in young cells, whereas symmetrical and thicker membranes were seen in older cells. Small bodies were found in 4d or older cultures and did not appear to contain any internal structures or an easily detectable unit membrane.

  • PDF