• Title/Summary/Keyword: Mori-Tanaka's의 평균장 이론

Search Result 4, Processing Time 0.018 seconds

Theoretical Investigation on the Stress-Strain Relationship for the Porous Shape Memory Alloy (기공을 갖는 형상기억합금의 응력 및 변형률 관계에 대한 이론적 고찰)

  • Lee Jae-Kon;Yum Young-Jin;Choi Sung-Bae
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.8-13
    • /
    • 2004
  • A new three-dimensional model fur stress-strain relation of a porous shape memory alloy has been proposed, where Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory is used. The predicted stress-strain relations by the present model are compared and show good agreements with the experimental results for the Ni-Ti shape memory alloy with porosity of 12%. Unlike linear stress-strain relations during phase transformations by other models from the literature, the present model shows nonlinear stress-strain relation in the vicinity of martensite finish region.

Study on material properties of $Cu-TiB_2$ nanocomposite ($Cu-TiB_2$ 나노 금속복합재의 물성치에 대한 연구)

  • Kim Ji-Soon;Chang Myung-Gyu;Yum Young-Jin
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.28-34
    • /
    • 2006
  • [ $Cu-TiB_2$ ] metal matrix composites with various weight fractions of $TiB_2$ were fabricated by combination of manufacturing process, SPS (self-propagating high-temperature synthesis) and SPS (spark plasma sintering). The feasibility of $Cu-TiB_2$ composites for welding electrodes and sliding contact material was investigated through experiments on the tensile properties, hardness and wear resistance. To obtain desired properties of composites, composites are designed according to reinforcement's shape, size and volume fraction. Thus proper modeling is essential to predict the effective material properties. The elastic moduli of composites obtained by FEM and tensile test were compared with effective properties from the original Eshelby model, Eshelby model with Mori-Tanaka theory and rule-of-mixture. FEM result showed almost the same value as the experimental modulus and it was found that Eshelby model with Mori-Tanaka theory predicted effective modulus the best among the models.

A Study on Prediction of Effective Material Properties of Composites with Fillers of Different Sizes and Arrangements (강화재의 크기 및 배치에 따른 복합재의 등가 물성치 예측에 대한 연구)

  • Lee, J. K.;Kim, J. G.
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • The validity of Eshelby-type model with Mori-Tanaka's mean field theory to predict the effective material properties of composites have been investigated in terms of filler size and its arrangement. The 2-dimensional plate composites including constant volume fraction of fillers are used as the model composite for the analytical studies, where the filler size and its arrangement are considered as parameters. The exact effective material properties of the composites are computed by finite element analysis(FEA), which are compared with effective material properties from the Eshelby-type model. Although the fillers are periodically or randomly arranged, the average Young's moduli by Eshelby-type model and FEA are in good agreement, specially for the ratio of specimen size to filler size being smaller than 0.03. However, Poisson's ratio of the composite by the Eshelby-type model is overestimated by $20\%$.

An Analytical Study on Prestrain and Shape Memory Effect of Composite Reinforced with Shape Memory Alloy (형상기억합금 강화 복합재의 사전 변형률과 형상기억 효과에 대한 이론적 고찰)

  • 이재곤;김진곤;김기대
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.54-60
    • /
    • 2004
  • A new three-dimensional model for predicting the relationship between the prestrain of the composite and the amount of phase transformation of shape memory alloy inducing shape memory effect has been proposed by using Eshelby's equivalent inclusion method with Mori-Tanaka's mean field theory. The model composite is aluminum matrix reinforced with short TiNi fiber shape memory alloy, where the matrix is work-hardening material of power-law type. The analytical results predicted by the current model show that most of the prestrain is induced by the plastic deformation of the matrix, except the small prestrain region. The strengthening mechanism of the composite by the shape memory effect should be explained by excluding its increase of yield stress due to the work-hardening effect of the matrix.