• Title/Summary/Keyword: Mooring lines

Search Result 134, Processing Time 0.031 seconds

Stability Analysis of Mooring Lines of a Submersible Fish Cage System Using Numerical Model

  • Kim, Tae-Ho;Hwang, Kyu-Serk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.690-699
    • /
    • 2011
  • A numerical model analysis was performed to analyze the stability of the mooring lines of an automatic submersible fish cage system in waves and currents. The fish cage system consisted of a 12-angled rigid frame, net cage, cover net, 12 upper floats, 12 tanks(for fixed and variable ballast), mooring lines, anchors, and a control station. Simulations were performed with the cage at the surface of the water and at a depth of 20 m. A Morison equation type model was used for simulations of the system in two configurations. The force parameters described both regular and random waves, with and without currents, and their values were input to the model. Mooring tension calculations were conducted on the mooring lines, grid lines and lower bridle lines of the cage. The stability of the mooring lines was checked under both static and dynamic conditions.

Estimation of damping induced by taut mooring lines

  • Xiong, Lingzhi;Lu, Wenyue;Li, Xin;Guo, Xiaoxian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.810-818
    • /
    • 2020
  • A moored floating structure may exhibit resonant motion responses to low-frequency excitations. Similar to the resonant responses of many vibration systems, the motion amplitude of a moored floating structure is significantly affected by the damping of the entire system. In such cases, the damping contributed by the mooring lines sometimes accounts for as much as 80% of the total damping. While the damping induced by catenary mooring lines is well-investigated, few studies have been conducted on the damping induced by taut mooring lines, especially one partly embedded in soil. The present study develops a simple but accurate model for estimating the damping contributed by mooring lines. A typical type of taut mooring line was used as the reference and the hydrodynamic drag force and soil resistance were taken into consideration. The proposed model was validated by comparing its predictions with those of a previously developed model and experimental measurements obtained by a physical model. Case studies and sensitivity studies were also conducted using the validated model. The damping induced by the soil resistance was found to be considerably smaller than the hydrodynamic damping. The superposition of the wave frequency motion on the low-frequency motion was also observed to significantly amplify the damping induced by the mooring lines.

Study on Effective Arrangement of Mooring Lines of Floating-Type Combined Renewable Energy Platform (부유식 복합 재생에너지 플랫폼 계류선의 효과적 배치에 관한 연구)

  • Choung, Joonmo;Jeon, Gi-Young;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.22-32
    • /
    • 2013
  • This paper presents the conceptual design procedure for the taut-leg mooring lines of a floating-type combined renewable energy platform. The basic configuration of the platform is determined based on an understanding of floating offshore plants. The main dimensions and mass distribution are determined based on a hydrostatic calculation. To identify the motion history of the floating platform and the tension history of the mooring lines, a hydrodynamic analysis is executed using Ansys.Aqwa. This helps in the selection of the best configuration for the mooring system such as the number of mooring lines, wire types, anchored positions, etc. In addition, the fatigue life of the mooring lines can be predicted from the tension history using the rain-flow cycle counting method.

Centrifuge Model Analysis on Mooring Line Deformation (닻줄변형에 관한 원심모형해석)

  • Han, Heui-Soo;Cho, Jae-Ho;Chang, Dong-Hun;Jeong, Yeon-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.15-22
    • /
    • 2006
  • Single segmented mooring lines were tested in a geotechnical centrifuge for the purpose of calibrating the analytical solution developed for the analysis and design of various mooring lines associated with underwater drag/permanent anchors. The model mooring lines included steel ball chains and wire cables placed at various depths within the soft clayey seafloor soil. The mooring lines were loaded to preset tensions at the water surface under an elevated acceleration inside the centrifuge to simulate the field stress conditions experienced by the prototype mooring lines. This paper describes the calibration of two factors that are used as part of the input parameters in the analytical solution of mooring lines and considers the effect of chasing wires that were used in the experiment to determine the locations of the mooring lines.

Dynamic Analysis of Berthed Mooring by Numerical Method (수치해석 기법을 이용한 안벽계류의 동력학적 고찰)

  • 조철희;김두홍;김병환;나인삼
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.69-75
    • /
    • 2001
  • It is very important to secure the marine vessels during entire loading and off-loading operations. The environment influences on loading conditions. the western coastal area of Korea is characterized as a strong current due to a high tidal range. The tension of mooring lines varies as per the current and wave changing its magnitude during the day. A proper mooring arrangement and design of mooring line should be determined as per environment conditions. In this study, a 50,000 DWT container ship being moored is investigated numerically. The dynamic tension of mooring lines is estimated by MORA (Mooring Response Analysis) software. Environmental conditions of selected offshore terminal site are plugged as input data. The mooring line tensions are obtained for various wave frequencies per wave directions. The results demonstrate the change of tensions of lines and the allowable range of safe conditions in berthed mooring.

  • PDF

Study on Motion and Mooring Characteristics of Floating Vertical Axis Wind Turbine System (부유식 수직축 풍력발전 시스템의 운동특성 및 계류특성에 대한 연구)

  • Jang, Min-Suk;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Kim, Jae-Heui;Kim, Hyen-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.202-207
    • /
    • 2017
  • This paper presents the results of an experimental study on the motions and mooring characteristics of a floating vertical axis wind turbine system. Based on a comparison of regular wave experiment results, the motions of structures with different types of mooring are almost the same. Based on the tension response results of a regular wave experiment with a catenary mooring system, the mooring lines in front of the structure have a larger tension effect than the back of the structure by the drifted offset of the structure. The dynamic response spectrum of the structure in the irregular wave experiments showed no significant differences in response to differences in the mooring system. As a result of the comparison of the tension response spectra, the mooring lines have a larger value with a drifted offset for the structure, as shown in the previous regular wave experiment. The results of the dynamic response of the structure under irregular wave and wind conditions showed that the heave motion response is influenced by the coupled effect with the mooring lines of the surge and pitch motion due to the drifted offset and steady heeling. In addition, the mooring lines in front of the structure have a very large tension force compared to the mooring lines in back of the structure as a result of the drifted offset of the structure.

A Positioning Mooring System Design for Barge Ship Based on PID Control Approach

  • Kim, Youngbok
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.94-99
    • /
    • 2013
  • This paper presents some experimental results about Position Mooring (PM) system applied to the barge ship. In PM operation, the station keeping in surge, sway of vessel is provided by the mooring system. In this paper, a system, consisting of a barge vessel and mooring lines, is mathematically modeled. The position and orientation of vessel is controlled by changing the tensions in the mooring lines. The PID control strategy is applied to evaluate the efficiency of proposed system. Experimental result which corresponds to the applied control strategy is presented and discussed.

Effect of platform shape and damaged mooring lines on the movement of semi-submersible wind turbines (반잠수식 풍력발전기의 형상 및 계류선 손상에 따른 운동특성)

  • Dong-Uk Kwon;Hee-Chang Lim
    • Journal of Wind Energy
    • /
    • v.13 no.3
    • /
    • pp.72-78
    • /
    • 2022
  • This study performed a numerical analysis on the effect of platform shape and damaged mooring lines on the movement of the semi-submersible floating offshore wind turbines (FOWT). The NREL 5 MW-OC4-DeepCwind semi-submersible wind turbine was selected as the reference model. In order to find the effect of the semi-submersible floating platform shape, the dynamic movement and feasibility of three different models were observed with and without the presence of turbine blades. In addition, extreme conditions were considered by having one of the mooring lines detached to determine the effects on the FOWT. As a result, the remaining mooring lines deviated to change the surge and sway motion, which could cause a collision with nearby marine structures, and the variation of yaw angle might lead to critical accidents such as rollover. Since the response of the floating platform after receiving mooring line damage may vary depending on the mooring pattern, the location of the mooring damage, and the direction of the wind and waves, detailed simulations showed substantial variation of damage patterns.

Numerical Study on Designing Truncated Mooring Lines for FPSO Stability Analysis (FPSO 안정성 평가를 위한 절단계류선 모델링 수치 연구)

  • Kim, Yun-Ho;Cho, Seok-Kyu;Sung, Hong-Gun;Seo, Jang-Hoon;Suh, Yong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.387-395
    • /
    • 2014
  • In this paper, a numerical analysis for an internal turret moored vessel located at a 400-m water depth is conducted. The target vessel has an internal turret that is located at the 0.2 Lpp position from the fore-side, with $3{\times}4$ complex mooring lines installed around the turret circumference. To investigate the motion response of the vessel and the structural reliability of the lines, model tests were conducted. The KRISO ocean basin has a water depth of 3.2 m, which represents 192m using a scaling of 1:60. In order to precisely represent the real-scale condition, equivalent mooring lines needed to be designed. Truncated mooring lines were designed to supplement the restriction of the flume's water depth and increase the reliability of the model testing. These truncated mooring lines were composed of two different chains in order to match the pre-tension, simultaneously restoring the curve and variation in the effective line tension. The static similarities were compared using a static pull-out test and free decaying test, and the dynamic similarities were matched via a regular wave test and combined environments test. Consequently, the designed truncated mooring system could represent the prototype mooring system relatively well in the aspects of kinematics and dynamics.

Investigation of Safety and Design of Mooring Lines for Floating Wave Energy Conversion (부유식 파력발전장치용 계류선의 설계 및 안전성 검토에 관한 연구)

  • Jung, Dong-Ho;Nam, Bo-Woo;Shin, Seung-Ho;Kim, Hyeon-Ju;Lee, Ho-Saeng;Moon, Deok-Soo;Song, Je-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.77-85
    • /
    • 2012
  • A study was performed on the design of a mooring line to maintain the position of a floating WEC (wave energy conversion) system. The procedure to design a mooring line is set up and the safety of the designed mooring system is evaluated using commercial software, Orcaflex. The characteristics curve for one line is analyzed to determine the properties and pretension of a mooring line. While considering the ocean environmental condition and importance of a floating WEC system, a multi-line layout is determined. A 4-point mooring system with 4 lines shows the instability in the yaw motion of the floating WEC system under a designed ocean environmental condition. The redesigned 4-point mooring system with 8 lines is found to be safe on the condition of a harsh ocean environment. The floating WEC system with the redesigned mooring system also shows stable motion in surge and pitch under operating conditions. From a parametric study on the mooring line length, the extreme value of the mooring line tension is found to be very sensitive to the pretension and length of mooring line. The results of this study can contribute to the establishment of a design procedure for mooring lines.