• Title/Summary/Keyword: Mooring Stability

Search Result 53, Processing Time 0.029 seconds

Conceptual Design for Mooring Stability System and Equipments of Mobile Harbor (모바일하버 선박의 계류안정화시스템 및 의장장치 개념설계)

  • Lee, Yun-Sok;Jeong, Tae-Gwon;Jung, Chang-Hyun;Kim, Se-Won
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.311-317
    • /
    • 2010
  • Mobile Harbor(MH) is a new paradigm for maritime transport system introduced in Korea, the target of which is to carry out ship-to-ship cargo operation rapidly and effectively even under a condition of sea state 3. A MH ship is moored alongside a large container vessel anchored at the defined anchorage and also equipped with gantry cranes for handling containers. The MH study concerned includes rapid container handling system, optimum design for floating structure, hybrid berthing & cargo operation system, design for cargo handling crane, etc. This paper is to deal with a conceptual design of a stabilized mooring system and mooring equipment under a condition of ship-to-ship mooring. In this connection, we suggest a positioning control winch system in order to control heave motions of the MH ship which is to add constant brakepower and stabilized function to an auto-tension winch and mooring equipment used currently in large container ships.

Proposition of Automatic Ship Mooring Using Hydraulic Winch (유압 윈치를 이용한 선박 자동 계선법)

  • Hur, J.G.;Yang, K.U.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • The numerical analysis of the automatic ship mooring system which was equipped in the ship for trying to berth at the pier was performed in this study. The automatic ship mooring using hydraulic winch was a new method that had not need to change the existing devices and to help a pilot ship of outside. The numerical results of the proposed mooring system including ship motion were that the speed and rolling phenomenon of ship was affected by changing in the ship weight and affected the slope maintenance and yaw degree of ship if there has a trim of stern. Also, a static force of ship at the initial movement was important to calculate the mooring power. The moving force and inertial force of ship on the vertical direction was confirmed for the mooring stability. Therefore, the power and velocity of hydraulic mooring winch should be determined by considering the significant characteristics such as weight, velocity, inertial force and moving force of ship.

A Design of Mooring Line for the Buoy-Enabled Underwater Surveillance System (부이형 수중감시 시스템에서 계류라인의 구조 설계)

  • Byun, Yang-Hun;Choi, Bum-Kyu;Oh, Tae-Won
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.41-47
    • /
    • 2018
  • The buoy-enabled underwater surveillance system is a device that is installed in a particular sea area and operated for a certain period of tine and moved to another sea area after recovery. In this paper, a mooring method which is applied for a buoy-enabled underwater surveillance system was selected to maintain installation and enure stable operation. Also, the structure of the mooring line was designed. Two-point mooring method was selected considering interference with the communication cable of array-assembly. The composite structure of buoy chain, nylon rope, and anchor chain is designed as the basic component of mooring line. For the verification of design, a numerical simulation and wave tank experiment were performed. Their results were confirmed similarity in test condition. Finally, the mooring lines were designed for the environment of the sea trial location. The mooring line produced by the final design confirmed the stability above the significant wave height considered in the design on the sea trial.

Numerical Study on Designing Truncated Mooring Lines for FPSO Stability Analysis (FPSO 안정성 평가를 위한 절단계류선 모델링 수치 연구)

  • Kim, Yun-Ho;Cho, Seok-Kyu;Sung, Hong-Gun;Seo, Jang-Hoon;Suh, Yong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.387-395
    • /
    • 2014
  • In this paper, a numerical analysis for an internal turret moored vessel located at a 400-m water depth is conducted. The target vessel has an internal turret that is located at the 0.2 Lpp position from the fore-side, with $3{\times}4$ complex mooring lines installed around the turret circumference. To investigate the motion response of the vessel and the structural reliability of the lines, model tests were conducted. The KRISO ocean basin has a water depth of 3.2 m, which represents 192m using a scaling of 1:60. In order to precisely represent the real-scale condition, equivalent mooring lines needed to be designed. Truncated mooring lines were designed to supplement the restriction of the flume's water depth and increase the reliability of the model testing. These truncated mooring lines were composed of two different chains in order to match the pre-tension, simultaneously restoring the curve and variation in the effective line tension. The static similarities were compared using a static pull-out test and free decaying test, and the dynamic similarities were matched via a regular wave test and combined environments test. Consequently, the designed truncated mooring system could represent the prototype mooring system relatively well in the aspects of kinematics and dynamics.

Structural stability analysis of jellyfish blocking net using numerical modeling (수치모델링을 활용한 해파리 차단 그물의 안정성 해석)

  • LEE, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.19-31
    • /
    • 2022
  • Damages by jellyfish are occurring frequently around the world. Among them, accidents caused by jellyfish stings are serious enough to cause death. So we designed a jellyfish blocking net and analyzed its stability to prevent sting caused by jellyfish entering the beach. To this end, the dynamic behavior of the jellyfish blocking net according to the current speed (0.25-1.0 m/s) and the net type (50, 100 and 150 mm) on the upper part of the blocking net was modeled using the mass spring model. As a result of simulations for the model, the horizontal tension (horizontal component of the mooring tension) of the mooring line increased with the decrease in the mesh size on the upper part of the blocking net at all current speeds, but exceeded the holding force at high tides faster than 0.5 m/s and exceeded the holding force at all current speeds at low tide. Therefore, the jellyfish blocking nets showed poor stability overall. The depth of the float line had a little difference according to the upper mesh size and increased lineary proportional to the current speed. However, the float line sank too much to block the incoming jellyfish. These analysis results helped us find ways to improve the stability of the jellyfish blocking net, such as adjusting the length of the mooring line and improving the holding power. Therefore, it is expected that this technology will be applied us various underwater structures to discover the weaknesses of the structures and contribute to increasing the stability in the future.

Motion Response and Mooring Analysis of Mobile Harbors Moored in Side-by-side (병렬 계류된 모바일하버의 운동응답 및 계류 해석)

  • Kim, Young-Bok
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.53-60
    • /
    • 2009
  • Recently, since there are several problems in space, the infra-structure and the facilities in the contiguity of the existing harbors due to the trend of enlarging the container capacity of the large container vessel, a special floating platform named as the Mobile Harbor has been proposed conceptually as an effective solution of those problems. Two kinds of hull shapes, a conventional mono-hull type and a catamaran type, are proposed as midway feeders to transfer containers to the harbor on land from a large container ship on near shore. In this study, the motion response and mooring analysis are carried out for comparing the global performance of two types of Mobile Harbor. Robot arm mooring facility specially is devised and newly tried to use for the safe fixation of a large container ship and the Mobile Harbor on near shore. It would be expected for this comparison study to give a guideline to design the efficient hull form for a midway loader.

Dynamic Analysis of Floating Bodies Considering Multi-body Interaction Effect (다물체 연성효과를 고려한 부유체의 동적거동 안전성 해석)

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.659-666
    • /
    • 2009
  • Recently, there are several problems in space, contiguity and facility of the existing harbors issued due to the trend of enlarging the container capacity of the large container vessel, the Mobile Harbor has been proposed conceptually as an effective solution for those problems. This concept is a kind of transfer loader of the containers from the large container ship, which is a floating barge with a catamaran type in the underwater part, and so prompt maneuverability and work effectiveness. For the safe mooring of two floating bodies, a container and the mobile harbor, in the near sea apart from the quay, a robot arm mooring facility specially devised would be designed and verified through comparison study under various environmental sea condition in the inner and outer harbor. DP system (Dynamic Positioning System) using the azimuth thruster and a pneumatic fender, etc, will be considered as a next research topic for the mooring security of multi-body floaters.

Dynamic Stability during Transportation of Bridge Caisson (교량 케이슨 운송의 동적 안정성 고찰)

  • Jo, Chul-Hee;Kim, Sung-Jun;Cheong, Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.104-108
    • /
    • 2009
  • As the demands of ocean resource development increase, many offshore structures are required. To cope with the active ocean developments, many types of construction methods have been applied for offshore facilities, including oil, gas and harbors. One of the challenges is to transport and install the heave bridge caisson. Several construction methods are well understood. However, for the sake of safety and reliability, the F/D installation method can be utilized. While the caisson is carried by an F/D, the mooring force of the tug boat and the structure stability from exiting motions in the dock should be checked against external loadings and sea conditions. The external loads can be classified with wind force, current force, and wave force. In the stability analysis, transportation velocity and draft of F/D are important factors. The dynamic stability and hook load for crane barge installation for the same caisson are also studied. Considering external loads and dominant factors, the stability of caisson during transportation has been investigated.

Experimental Study on Motion of FPSO and Characteristics of Mooring System according to Turret Position (터렛 위치에 따른 FPSO 거동 및 계류시스템 특성에 대한 실험 연구)

  • Lee, Dong-Yeop;Hong, Jang-Pyo;Cho, Seok-Kyu;Kim, Yoon-Ho;Sung, Hong-Gun;Seo, Jang-Hoon;Kim, Dae-Woong;Kim, Byung-Woo;Seo, Yong-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.143-153
    • /
    • 2015
  • This paper presents the results of an experimental study on the motion of an FPSO (Floating production storage and off-loading) and the characteristics of the mooring systejavascript:confirm_mark('abe', '1');m according to the turret position. Model tests of a turret-moored FPSO were carried out in the Ocean Engineering basin of KRISO. The FPSO was moored using an internal turret and catenary mooring. The models (1/60 scale) that were prepared included the FPSO, turret, and mooring lines. The experiments were conducted in irregular waves and combined environments, with waves, currents, and winds. A time-domain simulation was performed using OrcaFlex. The motion response and mooring line tension from the present calculations were compared with the results of experiments, and the agreement was fairly good. In addition, the results showed that the weathervaning stability was improved when the position of the turret was moved in the bow direction.

A Study on the Dynamic Analysis of Mooring System During Hook-up Installation

  • Lee, Min Jun;Jo, Hyo Jae;Lee, Sung Wook;Hwang, Jea Hyuk;Kim, Jea Heui;Kim, Young Kyu;Baek, Dong Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.285-293
    • /
    • 2020
  • This study evaluated the Hook-up installation of an offshore site construction process, which is the final step in an offshore site installation process. During Hook-up installation, the offshore structure can have a detrimental effect on the work stability due to low-frequency motion. Moreover, economic costs can be incurred by the increase in available days of a tugboat. Therefore, this study developed a numerical analysis program to assess the dynamic behavior of mooring systems during hook-up installation to analyze the generally performed installation process and determine when the tugboat should be released. In this program, the behavior of an offshore structure was calculated using Cummin's time-domain motion equation, and the mooring system was calculated by Lumped mass method (LMM). In addition, a tugboat algorithm for hook-up installation was developed to apply the Hook-up procedure. The model used in the calculations was the barge type assuming FPSO (Floating production storage and off-loading) and has a taut mooring system connected to 16 mooring lines. The results of the simulation were verified by comparing with both MOSES, which is a commercial program, and a calculation method for restoring coefficient matrix, which was introduced by Patel and Lynch (1982). Finally, the offset of the structure according to the number of tugboats was calculated using the hook-up simulation, and the significant value was used to represent the calculation result.