• Title/Summary/Keyword: Mooring Force

Search Result 132, Processing Time 0.025 seconds

Scattering of Oblique Waves by an Inanite Flexible Membrane Breakwater (유연막 방파제에 의한 경사파의 산란)

  • 조일형;홍석원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.219-226
    • /
    • 1995
  • The wave interaction with flexible membrane such as PVC and PU fabrics is studied to prove its applicability to portable breakwaters. To analyze the wave deformation due to the flexible membrane. eigen-function expansion method is employed. The fluid domain is seperated into two regions. The velocity potential in each regions and the deformation of membrane are coupled by the body boundary conditions. Herein the deformation of membrane is obtained by solving the membrane equation. As a numerical example, transmission and reflection coefficients according to the change of several design parameters such as tensile force. mooring line stiffness and membrane height are investigated. It is found that the efficiency of flexible membrane breakwater is significantly affected by these design parameters. The angle of incident wave is an important role to the performance of breakwater. Finally we conclude that flexible membrane can be used to engineering material for the future breakwaters.

  • PDF

Design and Simulation Tools for Moored Underwater Flexible Structures (계류된 수중 유연구조물의 설계 및 시뮬레이션 도구 개발)

  • Lee, Chun-Woo;Lee, Ji-Hoon;Choe, Moo-Youl;Lee, Gun-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.2
    • /
    • pp.159-168
    • /
    • 2010
  • This paper presents a mathematical model and simulation method for investigating the performance of set net systems and fish cage systems influenced by currents and waves. Both systems consist of netting, mooring ropes, a floating collar and sinkers. The netting and ropes were considered flexible structures and the floating collar was considered an elastic structure. Both were modeled on a mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and the mass points were connected by mass-less springs. Each mass point was subjected to external and internal forces and the total force was calculated at every integration step. An implicit integration scheme was used to solve the nonlinear dynamic system. The computation method was applied to dynamic simulation of actual systems simultaneously influenced by currents and waves in order to evaluate their practicality. The simulation results improved our understanding of the behavior of the structure and provided valuable information concerning the optimized design of set net and fish cage systems exposed to an open ocean environment.

Theoretical Study on the Dynamic Response of a Moored Buoy with Minimum Vertical Wave-exciting Force in Irregular Waves (수직운동(垂直運動)이 최소(最小)인 부표(浮標)의 불규칙파(不規則波)중 계류상태(繫留狀態)에 대한 동력학적(動力學的) 해석(解析))

  • H.S.,Choi;Hyo-Chul,Kim;Woo-Jae,Seong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 1984
  • A body form, which experiences minimum vertical wave-exciting forces in the vicinity of a prescribed wave frequency in water of finite depth, is obtained by an approximate method. Its configuration has the symmetry with respect to the vertical axis, expressed in terms of exponential functions. By distributing three-dimensional pulsating sources and dipoles on the immersed surface of the body, a velocity potential is determined and subsequently hydrodynamic forces including the 2nd-order time-mean drift forces are calculated. The dynamic behavior of the body moored in irregular waves is investigated numerically by using central difference method. Hereby irregular wave trains are simulated with examining its repeatability by comparing the resulting spectrum with original one. Numerical results indicated that the body form obtained from the present analysis possesses in general a favorable hydrodynamic characteristics in comparison with a spherical buoy and that the maximum excursion of the body can be significantly reduced by setting pre-tension of an appropriate amount in the mooring cable.

  • PDF

Experimental Study on Slow Drift Motion Damping (장주기 표류운동의 감쇠력에 관한 연구)

  • 김현조;홍사영;김진하
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.24-31
    • /
    • 2002
  • In the present study, the amount of slow drift motion damping of shuttle tanker in still water and various environments is measured through free decay model test. Although the estimation of slow drift damping is essential in analysing slow drift motion of moored FPSO or DP controlled shuttle tanker, it is difficult to predict damping accurately by theoretical analysis. The estimation of drift damping depends on model test mostly. Through the model test, the amount of slow drift damping is measured and the effects of environments and thruster action on drift damping are investigated. The measured damping characteristics are expected to be used in the analysis on slow drift motion of moored vessel.

A study on response analysis of submerged floating tunnel with linear and nonlinear cables

  • Yarramsetty, Poorna Chandra Rao;Domala, Vamshikrishna;Poluraju, P.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.219-240
    • /
    • 2019
  • This paper presents the comparison between SFT response with linear and nonlinear cables. The dynamic response analysis of submerged floating tunnel (SFT) is presented computationally with linear and nonlinear tension legs cables. The analysis is performed computationally for two wave directions one at 90 degrees (perpendicular) to tunnel and other at 45 degrees to the tunnel. The tension legs or cables are assumed as linear and non- linear and the analysis is also performed by assuming one tension leg or cable is failed. The Response Amplitude Operators (RAO's) are computed for first order waves, second order waves for both failure and non-failure case of cables. For first order waves- the SFT response is higher for sway and heave degree of freedom with nonlinear cables as compared with linear cables. For second order waves the SFT response in sway degree of freedom is bit higher response with linear cables as compared with nonlinear cables and the SFT in heave degree of freedom has higher response at low time periods with nonlinear cables as compared with linear cables. For irregular waves the power spectral densities (PSD's) has been computed for sway and heave degrees of freedom, at $45^0$ wave direction PSD's are higher with linear cables as compared with nonlinear cables and at $90^0$ wave direction the PSD's are higher with non-linear cables. The mooring force responses are also computed in y and z directions for linear and nonlinear cables.

Service Life Prediction of Marine Rubber Fender

  • Woo, Chang-Su;Park, Hyun-Sung;Sung, Il-Kyung;Yun, Soon-Hwan;Lee, Jae-Moon
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.70-76
    • /
    • 2019
  • The function and purpose of the marine rubber fender, to prevent the damage of the ship and the mooring while the ship is being attached to the pier. However, maintenance of the fender after installation is not enough, because it is generally handled as an attachment facility. Estimation the life of a marine rubber fender is important in the maintenance of a port. When manufacturers design and produce marine rubber fenders, they do so according to various conditions such as the reaction force acting on the hull and docking vessel and deformation after absorbing the kinetic energy of the ship. In this study, a method for predicting and evaluating service life from the product design and development stage was established, in order to evaluate the durability of the marine rubber fenders. The SSp-300H and HSP-300H models were used to predict the service life. The method developed in this study, is expected to predict the service life of the marine rubber fender accurately and in a comparatively shorter time, thereby contributing to the evaluation standard and quality stability of the product.

Dynamic Instability of Submerged Floating Tunnels due to Tendon Slack (긴장재 느슨해짐에 따른 해중 터널의 동적 불안정 거동)

  • Won, Deok Hee;Kim, Seungjun
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.401-410
    • /
    • 2017
  • This study deals with dynamic instability of a tendon moored submerged floating tunnel (SFT) due to tendon slack. In general, environmental loadings such as wave and current govern SFT design. Especially, the wave force, whose amplitude and direction continuously change, directly induces the dynamic behavior of the SFT. The motion of the floating tube, induced by the wave force, leads dynamic response of the attached tendons and the dynamic change of internal forces of the tendons significantly affects to the fatigue design as well as the structural strength design. When the severe motion of the SFT occurs due to significant waves, tendons might lose their tension and slack so that the floating tube can be transiently instable. In this study, the characteristics of dynamic instability of the SFT due to tendon slack are investigated performing hydrodynamic analysis. In addition, the effects of draft, buoyancy-weight ratio, and tendon inclination on tendon slack and dynamic instability behavior are analytically investigated.

Model Test on Motion Responses and Anchor Reaction Forces of an Articulated Tower-Type Buoy Structure in Waves (아티큘레이티드 타워 형태의 부이 구조물에 관한 파랑 중 운동응답 및 앵커 지지력에 관한 모형시험 연구)

  • Kwon, Yong-Ju;Nam, Bo Woo;Kim, Nam Woo;Won, Young-Uk;Park, In-Bo;Kim, Sea-Moon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.214-221
    • /
    • 2019
  • A series of model tests was performed to evaluate the survivability of an articulated tower-type buoy structure under harsh environmental conditions. The buoy structure consisted of three long pipes, a buoyancy module, and top equipment. The scale model was made of acrylic pipe and plastic with a scale ratio of 1/22. The experiments were carried out at the ocean engineering basin of KRISO. The performance of the buoy structure was investigated under waves only and under combined environmental conditions from sea state (SS) 5 to 7. A nonlinear time-domain numerical simulation was conducted using the mooring analysis program OrcaFlex. The survivability of the buoy was analyzed based on three factors: the pitch motion, submergence of the top structure, and anchor reaction force. The model test results were directly compared to the results of numerical simulations. The effects of the sea state and combined environment on the performance of the buoy structure were investigated.

The linear model analysis and Fuzzy controller design of the ship using the Nomoto model (Nomoto모델을 이용한 선박의 선형 모델 분석 및 퍼지제어기 설계)

  • Lim, Dae-Yeong;Kim, Young-Chul;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.821-828
    • /
    • 2011
  • This paper developed the algorithm for improving the performance the auto pilot in the autonomous vehicle system consisting of the Track keeping control, the Automatic steering, and the Automatic mooring control. The automatic steering is the control device that could save the voyage distance and cost of fuel by reducing the unnecessary burden of driving due to the continuous artificial navigation, and avoiding the route deviation. During the step of the ship autonomic navigation control, since the wind power or the tidal force could make the ship deviate from the fixed course, the automatic steering calculates the difference between actual sailing line and the set course to keep the ship sailing in the vicinity of intended course. first, we could get the transfer function for the modeling of ship according to the Nomoto model. Considering the maneuverability, we propose it as linear model with only 4 degree of freedoms to present the heading angle response to the input of rudder angle. In this paper, the model of ship is derived from the simplified Nomoto model. Since the proposed model considers the maximum angle and rudder rate of the ship auto pilot and also designs the Fuzzy controller based on existing PID controller, the performance of the steering machine is well improved.

A Study on the Slowly Varying Wave Drift Force Acting on a Semi-Submersible Platform in Waves (반잠수식 시추선에 작용하는 장주기 표류력에 관한 연구)

  • S.Y.,Hong;P.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-63
    • /
    • 1989
  • Wave drift forces which are small in magnitudes compared to the first order wave exciting forces can cause very large motion of a vessel in waves. In this paper a theoretical and experimental analysis is made of the mean and slowly varying wave dirft forces on the semi-submersible platform. Theoretical calculations are performed by using near field method with three dimensional diffraction theory and model tests are carried out in regular and irregular waves with a 1/60 semi model. Test results are compared with theoretical calculations and the mooring spring effects in the test are discussed.

  • PDF