• 제목/요약/키워드: Mooring Analysis

검색결과 318건 처리시간 0.024초

선박 안벽 계류에 있어서의 파력 영향 고찰 (Investigation on the influence of wave forces on the moored ship beside Quay)

  • 이진호;김병우;김문성;하문근
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.237-242
    • /
    • 2003
  • The influence of wave forces on the moored ship beside quay was investigated based on in-house ship mooring analysis and ship motion program in this paper. The wind and current are the general environmental factors for the mooring analysis beside quay in the mild weather. However, the weather is becoming rough, the wave phenomenon should be included in the mooring analysis. In this paper, as preliminary stages, each moored rope tension was evaluated based on wind and current environmental condition. The results were compared with those from MOSES, commercial program. In addition to this, wave forces of the ship were calculated in order to solve moored ship motion of equation. We will leave to solve this motion equation as future work.

  • PDF

Dynamic response analysis of submerged floating tunnels by wave and seismic excitations

  • Lee, Jooyoung;Jin, Chungkuk;Kim, Moohyun
    • Ocean Systems Engineering
    • /
    • 제7권1호
    • /
    • pp.1-19
    • /
    • 2017
  • This paper presents the numerical simulation results for the dynamic responses of two types of submerged floating tunnels (SFT) under wave and/or seismic excitations. Time domain simulations are conducted by the commercial program OrcaFlex (OF) and in-house CHARM3D program (CP). The dynamic performances of a short/rigid/free-end SFT section with vertical and inclined mooring lines are evaluated. The SFT numerical models were validated against Oh et al.'s (2013) model test results under regular wave conditions. Then the numerical models were further applied to the cases of irregular waves or seismic motions. The main results presented are SFT surge/heave motions and mooring tensions. The general trends and magnitudes obtained by the two different software packages reasonably agree to each other along with experimental results. When seabed seismic motions are applied to the SFT system, the dynamic responses of SFTs are small but dynamic mooring tension can significantly be amplified. In particular, horizontal earthquakes greatly increase the dynamic tension of the inclined mooring system, while vertical earthquakes cause similar effect on vertical mooring system.

Basic Analysis for Improvement of Mooring Stability Under Long Wave Impact

  • Ha, Chang-Sik;Moon, Seung-Hyo;Lee, Joong-Woo
    • 한국항해항만학회지
    • /
    • 제41권5호
    • /
    • pp.329-336
    • /
    • 2017
  • This study suggests a general process of analyzing the mooring and cargo handling limit waves, which is an incident to the new energy port under long wave agitation. To reduce damages of ships and harbor structures due to strong wave responses, it is necessary to predict the change of wave field in the mooring berth to make the proper decision by dock master. The berthing area at a new LNG port in the east coast of Korea in this study is frequently affected by oscillations from waves of 8.5~13s periods in the wintertime. The long period waves give difficulties on port operation by lowering the annual berthing ratio. It needs to find the event waves from the real time offshore wave records, which cause over the mooring limits. For that purpose, the wave records from field measurement and offshore wave buoy were analyzed. From numerical simulation, the response characteristics of long period waves in the berthing area were deduced with or without breakwater expansion plan, analyzing the offshore field wave data collected for two years. Some event wave cases caused over the cargo handling and mooring limits as per the standard Korean port design guideline, and those were used for the decision of port operation by dock master, comparing with the real time offshore wave observations.

다점계류식 FPSO의 해양환경별 계류선 각도와 최대 장력에 대한 연구 (Mooring Layout Angle and Maximum Tension for Spread Moored FPSOs in Various Metocean Conditions)

  • 박성부;이승재;정윤석;이민경;정광효
    • 한국해양공학회지
    • /
    • 제30권4호
    • /
    • pp.253-259
    • /
    • 2016
  • This study demonstrates the result of mooring analysis for five spread-moored FPSOs having different length-to-breadth (L/B) ratios from 4.5–6.5. FPSOs are subjected to four metocean conditions, ones from the Gulf of Mexico (Hurricane/Loop current condition), West Africa, Nigeria, and Brazil Campos Basin, which are amongst the most typical offshore oil and gas fields. With change in design parameters of OBA (Outer bundle angle) and IBA (Inner bundle angle) combinations, a change in the line tension is demonstrated and the OBA-IBA combinations having the smallest line tension are presented for each L/B ratio and sea, respectively. This study is expected to influence the preliminary design layout of an FPSO spread-mooring system as a function of the L/B ratio and metocean conditions.

Coupled CFD-FEM simulation of hydrodynamic responses of a CALM buoy

  • Gu, Haoyuan;Chen, Hamn-Ching;Zhao, Linyue
    • Ocean Systems Engineering
    • /
    • 제9권1호
    • /
    • pp.21-42
    • /
    • 2019
  • In this paper, the Finite-Analytic Navier-Stokes (FANS) code is coupled with an in-house finite-element code to study the dynamic interaction between a floating buoy and its mooring system. Hydrodynamic loads on the buoy are predicted with the FANS module, in which Large Eddy Simulation (LES) is used as the turbulence model. The mooring lines are modeled based on a slender body theory. Their dynamic responses are simulated with a nonlinear finite element module, MOORING3D. The two modules are coupled by transferring the forces and displacements of the buoy and its mooring system at their connections through an interface module. A free-decay model test was used to calibrate the coupled method. In addition, to investigate the capability of the present coupled method, numerical simulations of two degree-of-freedom vortex-induced motion of a CALM buoy in uniform currents were performed. With the study it can be verified that accurate predictions of the motion responses and tension responses of the CALM buoy system can be made with the coupling CFD-FEM method.

ANCHOR MOORING LINE ANALYSIS IN COHESIVE SEAFLOOR

  • Sangchul Bang
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.58-76
    • /
    • 2000
  • An analytical solution method capable of determining the geometric configuration and developed tensile forces of mooring lines associated with fixed plate/pile or drag anchors is presented. The solution method, satisfying complete equilibrium conditions, is capable of analyzing multi-segmented mooring lines that can consist of either chains, cables, or wires embedded in layered seafloor soils. Centrifuge model tests and full -scale field tests were used to calibrate and validate the analytical solution.

  • PDF

Comparison of simplified model and FEM model in coupled analysis of floating wind turbine

  • Kim, Byoung Wan;Hong, Sa Young;Sung, Hong Gun;Hong, Seok Won
    • Ocean Systems Engineering
    • /
    • 제5권3호
    • /
    • pp.221-243
    • /
    • 2015
  • This paper compares simplified and finite element method (FEM) models for tower and blade in dynamic coupled analysis of floating wind turbine. A SPAR type wind turbine with catenary mooring lines is considered in numerical analysis. Floating body equation is derived using boundary element method (BEM) and convolution. Equations for mooring line, tower and blade are formulated with theories of catenary, elastic beam and aerodynamic rotating beam, respectively and FEM is applied in the formulation. By combining the equations, coupled solutions are calculated. Tower or blade may be assumed rigid or lumped body for simplicity in modeling. By comparing floating body motions, mooring line tensions and tower stresses with the simple model and original FEM model, the effect of including or neglecting elastic, rotating and aerodynamic behavior of tower and blade is discussed.

외해 해조류 양식시설의 동적특성 해석 (Numerical Simulation on Dynamic Characteristics of Offshore Seaweed Culture Facility)

  • 이선민;황하정;나원배
    • 한국해양공학회지
    • /
    • 제27권6호
    • /
    • pp.7-15
    • /
    • 2013
  • Eco-friendly and sustainable seaweed biomass energy have been under the spotlight as the future of renewable energy. However, seaweed culture is primarily conducted inshore, with the research on offshore culture still in an early stage. For massive biomass production, a systematic engineering approach is required to devise offshore seaweed culture facilities rather than the conventional empirical ones. To establish the fundamental behavior of seaweed culture facilities, the dynamic characteristics of a seaweed culture facility were analyzed in the study. For this purpose, numerical analyses of the seaweed culture facility (a frame type) were carried out by using the hydrodynamic simulation program ANSYS-AQWA. For the analysis, environmental loads were considered using the wave spectra and co-linear current; mooring variables were selected as parameters; and time domain analyses were carried out to acquire the time series responses and eventually the dynamic characteristics. Finally, the mooring performance was evaluated. It was found that the motion could be controlled by adjusting the buoyancy and mooring slope.

불규칙 파랑 중 해중 터널 계류선의 단기 피로 손상 분석 (Investigation of Fatigue Damage of the Mooring Lines for Submerged Floating Tunnels Under Irregular Waves)

  • 김승준;원덕희
    • 한국강구조학회 논문집
    • /
    • 제29권1호
    • /
    • pp.49-60
    • /
    • 2017
  • 부유식 구조물의 계류선의 설계는 강도뿐만 아니라 피로수명 측면에서도 검토가 반드시 요구된다. 일반적으로 계류선의 피로 설계에는 동적 응력을 야기하는 하중이 지배적인 영향을 미치게 된다. 즉, 파랑이 주요 설계 하중으로 고려가 된다. 본 연구에서는 불규칙 파랑에 대한 해중 터널 계류선의 피로 손상 특성에 대해 분석한다. 시간 이력 유체-구조 동역학 해석을 통해 특정 환경 하중에 대한 해중터널의 동적 운동 및 계류선에 발생하는 장력과 응력을 계산하고, Rainflow 집계법 및 Palmgren-Miner의 법칙 그리고 DNV 기준에서 제시하는 해양구조물 설계를 위한 S-N 곡선을 고려하여 단기 피로 손상을 추정한다. 해중 터널의 계류 형식과 유사한 계류 형식을 갖는 인장각 플랫폼의 텐던 설계를 참고하여 100년 재현 주기 파랑이 48시간 지속되는 조건을 가정하여 이 환경 하중에 의한 피로 손상도를 추정한다. 본 해석 절차를 따르며, 함체의 흘수와 계류선의 간격 및 초기 기울임 각도가 피로 손상도에 미치는 영향을 분석한다.

강한 인장 상태에서의 계류 체인 링크의 휨 거동 (Bending Behavior of the Mooring Chain Links Subjected to High Tensile Forces)

  • 김승준;원덕희
    • 한국강구조학회 논문집
    • /
    • 제29권2호
    • /
    • pp.99-110
    • /
    • 2017
  • 본 연구는 부유식 구조물의 위치 제어를 위한 계류 체인 링크의 휨 거동에 대해 다룬다. 일반적으로 체인 구조는 링크 간 연결조건에 따라 축력만 전달하는 구조체로 인식되었다. 그러나 체인에 강한 인장력이 작용할 때, 접촉하는 두 링크 간의 마찰력에 의해 휨 강성이 도입되게 된다. 특히, 부유식 플랫폼의 계류선은 강한 인장력이 유지되는데, 물리적으로는 긴장 상태에 있는 체인 링크 간 접촉면에 마찰특성에 의해 휨 강성이 도입되면 환경하중을 받는 플랫폼에 회전 운동이 발생할 때, 계류선에도 회전 변위를 일으키고 이는 결과적으로 설계 시 고려하지 못한 휨모멘트 및 휨응력이 체인에 작용하게 된다. 실제 2005년 Girrasol Buoy 플랫폼의 해상 설치 후 5개월 만에 파손된 계류 체인의 사고 조사 시 주요 원인으로 이러한 휨 거동에 의한 부가 피로손상 누적이 지적되었다. 본 연구에서는 비선형 유한요소해석을 통해 긴장상태에 있는 체인에 도입되는 휨 강성 및 휨 응력의 특성에 대해 분석한다.